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Real Analysis

Preface

These notes are compatible with the MA337 course (Fall 2025) at SUSTech, and part of

the course-notes-and-resources initiative: SUSTech-Kai-Notes.

I tried my best to make sure every statement and proof make sense, and I made some

complements, which might be useful, to the original contents of the course. For instance,

the Dynkin classes.

I would like to express my sincere gratitude for Prof. Ilya Kossovskiy, who gave intriguing

lectures with almost everything memorised in his mind (without keeping copying from

some references during his lectures).

Main reference:

A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional

Analysis : translated from the first (1954) Russian edition by Leo F. Boron, Gra Ylock

Press, 1957.

(There is also a Chinese version of the book published by Higher Education Press, 2006.)
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Real Analysis 1 Set Theory

1 Set Theory

This section is a crash course on set theory.
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1.1 Elements of Set Theory

A set is a collection of well-defined objects. In fact, we cannot have a definable notion of

a set.

Notation: A set consists of its elements: a ∈ A;

∅: empty set, i.e. ∀x, it holds x /∈ ∅.

DEFINITION 1.1. A ⊂ B (A is included in B) if ∀a ∈ A⇒ a ∈ B.

Proposition 1.1. ∀ set A, ∅ ⊂ A.

DEFINITION 1.2 (Complement of a Set). Let A ⊂ Ω, then the complement of A in

Ω is defined as Ac = {x ∈ Ω : x /∈ A}.

Question: Why should we be careful with the notion of sets?

Example 1.1 (Barber’s Paradox). This is a paradox proposed by British philosopher and

mathematician Bertrand Russell.

Imagine that in a city X, there are residents with one of them being a barber. It’s

known that the barber only shaves everyone who doesn’t shave himself. Does the barber

shave himself? This leads to a contradiction.

Mathematically speaking, there doesn’t exist a set of all sets.

DEFINITION 1.3 (Power Set). Let A be a set, then the power set of A is defined as

2A = { all subsets of A }.

Proposition 1.2. |2A| = 2|A| if A is finite.

DEFINITION 1.4 (Set Operation). Let A,B be two sets, then

1. Union: A ∪B = {x : x ∈ A or x ∈ B}.

2. Intersection: A ∩B = {x : x ∈ A and x ∈ B}.

3. Difference: A \B = {x : x ∈ A and x /∈ B}.

4. Symmetric Difference: A△B = (A \B) ∪ (B \ A).

Remark 1.1. Union and intersection can also be defined for any amounts of sets by using

index set. Let E be a set. ∀α ∈ E, we associate it with a set Aα and then define
⋃

α∈E Aα

and
⋂

α∈E Aα.
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Figure 1: union Figure 2: intersection

Figure 3: difference Figure 4: symmetric difference

Notation:
⊔

α∈E Aα means disjoint union, i.e. ∀α, β ∈ E,α ̸= β, we have Aα ∩Aβ = ∅.

Proposition 1.3. 1. Commutativity: A ∪B = B ∪ A, A ∩B = B ∩ A;

2. Associativity: (A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C);

3. Distributivity: A∪ (B ∩C) = (A∪B)∩ (A∪C), A∩ (B ∪C) = (A∩B)∪ (A∩C);

Note: If we view ∪ as ⊕ and ∩ as ⊗, then we get aioms of a commutative ring in

algebra.

4. De Morgan’s Laws: (
⋃

α∈E Aα)
c =

⋂
α∈E A

c
α, (
⋂

α∈E Aα)
c =

⋃
α∈E A

c
α.

Proof. Let Ω be the whole space. We only prove the first identity.

1. ∀x ∈ LHS, x ∈ Ω and x /∈
⋃

α∈E Aα

⇒ ∀α ∈ E, x /∈ Aα ⇒ ∀α ∈ E, x ∈ Ac
α ⇒ x ∈

⋂
α∈E A

c
α.

2. ∀x ∈ RHS, ∀α ∈ E, x ∈ Ac
α and x /∈

⋂
α∈E A

c
α.

⇒ ∀α ∈ E, x ∈ Aα ⇒ ∀α ∈ E, x ∈ Ac
α ⇒ x ∈

⋃
α∈E A

c
α.

Thus, LHS = RHS.

DEFINITION 1.5 (Cartesian Product). Let A,B be two sets, then the Cartesian
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Product of A and B is defined as A×B = {(a, b) : a ∈ A, b ∈ B}.

Example 1.2. R2 = R× R, Rn = R×R× · · · ×R︸ ︷︷ ︸
n times

.
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1.2 Functions between Sets

1.2.1 Mappings, Functions

DEFINITION 1.6 (Function). Let A,B be two sets, then amapping is a setX ⊂ A×B,

s.t.

1. ∀x ∈ X, ∃y ∈ B, s.t. (x, y) ∈ X;

2. ∀x ∈ A, ∀y1, y2 ∈ B, if (x, y1) ∈ X and (x, y2) ∈ X, then y1 = y2.

Such a mapping is called a function.

Notation: y = f(x) (function ↔ mapping).

DEFINITION 1.7. 1. Injective: f(x1) = f(x2)⇒ x1 = x2.

2. Surjective: ∀y ∈ B, ∃x ∈ A, s.t. f(x) = y.

3. Bijective: both injective and surjective.

(bijection ↔ equivalence ↔ one-to-one mapping)

1.2.2 Equivalence Relations

DEFINITION 1.8 (Equivalence Relation). Let A be a set, then an equivalent realtion

on A is a subset X ⊂ A× A, with the following properties:

(Notation: x ∼ y if (a, b) ∈ X)

1. reflexivity: x ∼ x;

2. symmetry: x ∼ y ⇒ y ∼ x;

3. transitivity: x ∼ y, y ∼ z ⇒ x ∼ z.

DEFINITION 1.9. Having an equivalent relation, an equivalent class of an element

x ∈ A is defined as [x] := {y ∈ A : y ∼ x}.

Proposition 1.4. Two equivalent classes either coincide or don’t intersect.

THEOREM 1.5. ∃ a set E ⊂ A, s.t. A =
⊔

α∈E Xα, i.e A is a disjoint union of

equivalent classes.

Thus, each equivalent class can uniquely identified by randomly selecting one element

from the class, which is called a representative of the equivalent class.
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Example 1.3. Let A = C: the complex plain. z ∼ w if |z| = |w|.

Then C =
⊔

r∈[0,+∞)Cr, where Cr = {z ∈ C : |z| = r}.

DEFINITION 1.10. Two sets A,B are called equivalent if there exists a bijection

f : A→ B.

From now on, we focus on equivalence relation of sets based on the above definition.

1.2.3 Cardinals, Countable Sets

DEFINITION 1.11 (Cardinal). Let X be a set of sets. This gives an equivalent relation

on X. We obtain equivalent classes of sets. Each equivalent class is called a cardinal

(cardinal number).

Notation: |A|: cardinal of set A.

Remark 1.2. 1. Define ”0” = emptyset, ”1” = {0}, ”2” = {0, 1}, ”3” = {0, 1, 2}, etc. So,

the number ”n” is really a set with n elements in it.

2. A set A is called ”finite” iff there is some n and a function f : A→ {1, 2, . . . , n}

which is bijective.

3. A set A is called ”infinite” iff it is not finite.

Example 1.4. A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}, then A ∼ B ⇔ n = m.

DEFINITION 1.12 (Countable Set). A set A is called countable if A ∼ N.

A countable set is also called listable, which means we can list all its elements in an

infinite sequence.

So, the key to prove a set is countable is

1. to find a bijection between the set and N;

or

2. to find a way to explicitly list out all elements of the set without repeating or

missing a single element.

DEFINITION 1.13 (At Most Countable Set). A set A is called at most countable if

A is finite or countable.

Proposition 1.6. A set A is infinite ⇔ A ⊃ B, where B is a countable set.
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Proof. ⇐: Obvious;

⇒: Take a1 ∈ A, then take A\{a1} which is also infinite. So we can take a2 ∈ A\{a1},

then take A \ {a1, a2} which is also infinite. Repeat this process.

Let B = {a1, a2, a3, . . .} where all ai are distinct ⇒ A ⊃ B.
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1.3 Standard Equivalences

1.3.1 Important Examples

Example 1.5. 1. Z ∼ N

Proof. We just list all the elements of Z: Z = {0, 1,−1, 2,−2, . . .}.

2. Q ∼ N

Proof.

1 2 3 4 · · ·

1 0/1 1/1 2/1 3/1 · · ·

2 0/2 1/2 2/2 3/2 · · ·

3 0/3 1/3 2/3 3/3 · · ·

4 0/4 1/4 2/4 3/4 · · ·
...

...
...

...
...

. . .

Start from (1, 1) and move along the diagonals: (1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3), . . .

while we skip those fractions that are not in the lowest terms (repeated).

This gives us the following sequence: 0
1
, 1
1
, 1
2
, 2
1
, 3
1
, 1
3
, 2
3
, 3
2
, 4
1
, . . . which is a listing of

all positive elements in Q. Then, using the same trick as we listing all elements in

Z, we have Q ∼ N.

3. R ∼ (0, 1)

Proof. 1. (a, b) ∼ (c, d): y = αx+ β;

2. f(x) = arctan(x): R→ (−π
2
, π
2
).

Composing 1 and 2, we can get R ∼ (0, 1).

4. (a, b) = [a, b]

Proof. We only need to prove (0, 1) ∼ [0, 1].
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Define f(x) =



1
2
, x = 0;

1
3
, x = 1;

1
n+2

, x = n ∈ N;

x, otherwise;

It is easy to check that f is bijective.

1.3.2 Continual Sets, Cantor’s Theorem

DEFINITION 1.14 (Continual Set). A set A is called continual if A ∼ R.

Remark 1.3. continual sets ∼ R ∼ [a, b] ∼ (a, b).

Question: Is continual the same as uncountable?

THEOREM 1.7 (Cantor’s Theorem). ∀ set E: E ̸∼ 2E.

Proof. Assume rather: ∃ a bijection f : E → 2E.

Consider A = {x ∈ E : x /∈ f(x) ∈ 2E} ⊂ E ⇒ A ∈ 2E.

Since f is bijctive, there exists a unique a ∈ E s.t. A = f(a).

Question: Is a ∈ A?

1. If a ∈ A, then by definition of A, a /∈ f(a) = A. Contradiction.

2. If a /∈ A, then by definition of A, a ∈ f(a) = A. Contradiction.

So such bijection f doesn’t exist ⇒ E ̸∼ 2E.

Now, let’s consider 2N.

In fact, 2N ∼ { all sequences of {0, 1} } (each 0 and 1 meaning whether en element in

N is in the subset or not).

Reminder: ∀x ∈ [0, 1], x can be written as x = 0.a1a2a3 . . . , with an ∈ {0, 1}∀n.

Method: Using bisection method, if x ∈ [0, 1
2
)⇒ a1 = 0, if x ∈ [1

2
, 1]⇒ a1 = 1. Repeat

this process for each subinterval.

For example, 1 = 0.111111 . . . .

And this method of representing all elements in [0, 1] can cover all elements in { all

sequences of {0, 1} }. Also, we don’t have two elements in [0, 1] corresponding to the same
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sequence of {0, 1} except those like 0.1000 · · · = 0.0111 . . . . These elements are countable,

so we can just ignore them (Countable sets setminus countable real subsets can still have

at most countable elements left).

Thus, 2N ∼ [0, 1] and 2N ̸∼ N.

⇒ continual ̸= countable.

Remark 1.4. We can represent the cardinal of countable and continual sets by using

Hebrew alphabet ℵ0 and ℵ1, i.e. |N| = ℵ0, |R| = ℵ1.

cbna 10 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Real Analysis 1 Set Theory

1.4 Comparing Cardinals

1.4.1 Ordered Sets

DEFINITION 1.15 (Order). Let E be a set, then an order (partial order) on E is a

subset X ⊂ E × E, we write a ≤ b with the following properties:

(Notation: if (a, b) ∈ X)

1. reflexivity: a ≤ a;

2. anti-symmetry: a ≤ b and b ≤ a⇒ a = b;

3. transitivity: a ≤ b and b ≤ c⇒ a ≤ c.

E is called a (partial) ordered set with order ≤.

Example 1.6. 1. R: natural ordering. Take E ⊂ R.

2. Rn with lexicographic ordering:

x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , yn), then x⃗ ≤ y⃗ means xi ≤ yi, ∀i ∈ J1, nK

Note that not all elements are comparable, e.g. (1, 2) and (2, 1) are not comparable.

DEFINITION 1.16 (Linearly Ordered Set). We add the forth axiom to the definition

of order:

4. comparability: ∀a, b ∈ E, it holds a ≤ b or b ≤ a.

Then E is called a linearly ordered set with order ≤.

Example 1.7. Still take E ⊂ R.

DEFINITION 1.17 (Well Ordered Set). We add the fifth axiom to the definition of

linearly ordered set:

5. least element: ∀A ⊂ E, A has its least element, i.e. ∃a ∈ A, s.t. a ≤ x,∀x ∈ A.

Then E is called a well ordered set with order ≤.

Example 1.8. N with the usual order.

Example 1.9. A linearly ordered set but not a well ordered set

Z with the usual order.

Z<0 ⊂ Z but it doesn’t have a least element.
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1.4.2 Zermelo’s theorem, Cantor-Bernshtain Theorem

The sets of all cardinals actually can have order, which follows our intuition.

DEFINITION 1.18. For two cardinals C1 and C2, we say that C1 ≤ C2 if for some

representative set E1 ∈ C1 and E2 ∈ C2, it holds E1 ∼ E ′
2 ⊂ E2 for some E ′

2 ⊂ E2.

Example 1.10. Natually, ℵ0 ≤ ℵ1 since N ∼ N ⊂ R.

THEOREM 1.8 (Zermelo’s Theorem). ∀ cardinals C1, C2, it holds: either C1 ≤ C2 or

C2 ≤ C1, i.e. ∀ set A,B, either A ∼ B′ ⊂ B or B ∼ A′ ⊂ A.

THEOREM 1.9 (Cantor-Bernstein Theorem). If |X| ≤ |Y |, and |Y | ≤ |X|, then

|X| = |Y |.

Proof. Let f : X → Y and g : Y → X be injections.

Consider a point x ∈ X.

• If x ∈ g(Y ), we form g−1(x) ∈ Y .

• If g−1(x) ∈ f(X), we form f−1(g−1(x)), and so forth.

Either this process can be continued indefinitely, or it terminates with an element of

X \ g(Y ), or Y \ f(X).

In these 3 cases we say that x is in X∞, XX or XY .

=⇒ X = X∞ ∪XX ∪XY .

In the same way, Y = Y∞ ∪ YX ∪ YY .

Clearly, X∞
f↔ Y∞, YX

f↔ XX , YY
g↔ XY .

Therefore we define h : X → Y by

h(x) =


f(x) if x ∈ X∞ ∪XX

g−1(x) if x ∈ XY

Then h is bijective.

Corollary 1.10. The set of all cardinal numbers is linearly ordered.
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Further, we have the theorem below also by Zermelo.

THEOREM 1.11 (Zermelo’s Theorem). Cardinal numbers are actually well ordered.

So, one can natually order cardinals.
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1.5 Continuum Hypothesis and Exercises

Cantor Theorem means |E| < |2E| =⇒ ∃ larger and larger cardinals.

For example, |N| = ℵ0 < |R| = ℵ1.

1.5.1 Continuum Hypothesis

Famous Open Question: Continuum Hypothesis

We know that ℵ0 < c (where c = 2ℵ0).

Question: Does there exist a set A such that ℵ0 < |A| < c?

THEOREM 1.12. This question has no solution! (i.e. the existence of such set cannot

be proved or disproved). This is an illustration of Gödel’s Incompleteness Theorems.

1.5.2 A Few Exercises

Example 1.11. Prove R \ N ∼ R.

Proof. Clearly, R \ N ⊂ R. On the other hand, R \ N ⊃ (0, 1) ∼ R. By Cantor-Bernstein

Theorem: R \ N ∼ R.

Example 1.12. Prove that C[0, 1] ∼ R, where C[0, 1] is the space of continuous functions

on [0, 1].

Proof. Reason: A continuous function is uniquely determined by its values at x ∈ Q!

(f(x) = limxn→x,xn∈Q f(xn)).

Thus, |C[0, 1]| ≤ |{f : Q ∩ [0, 1] → R}|. Let’s analyze this cardinality. |{f : Q →

R}| = |RQ| = (c)ℵ0 = (2ℵ0)ℵ0 = 2ℵ0·ℵ0 = 2ℵ0 = c = |R|.

On the other hand, constant functions are in C[0, 1], so R ⊂ C[0, 1] =⇒ |R| ≤ |C[0, 1]|.

By Cantor-Bernstein Theorem, |C[0, 1]| = c = |R|.
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1.6 Axiom of Choice and Zorn’s Lemma

DEFINITION 1.19 (Axiom of Choice). Let {Aα}α∈I be a group of sets (meaning a

family of sets indexed by I). Then there exists a function f : I →
⋃

α∈I Aα such that

f(α) ∈ Aα for all α ∈ I. (This essentially means we can ”choose” one element from each

set simultaneously).

This axiom has several equivalent formulations, and the most applicable one is as

follows:

THEOREM 1.13 (Zorn’s Lemma). Let E be a (partially) ordered set. Assume that the

followings hold: Every chain A in E (i.e. a subset A ⊂ E where every 2 elements are

comparable) has an upper bound in E (i.e. ∃s ∈ E s.t. x ≤ s, ∀x ∈ A).

Then E has a maximal element m (i.e. ∄x ∈ E s.t. m < x, or equivalently

∀x ∈ E,m ≤ x =⇒ m = x).

Remark 1.5. Axiom of Choice ⇐⇒ Zorn’s Lemma.

One application of Zorn’s Lemma is the existence of a basis in a linear space (even

infinite-dimensional).

DEFINITION 1.20 (Basis of a Linear Space). A basis for a linear space V is a system

S = {eα} such that:

1. There are no (finite) non-trivial linear combinations between elements of {eα} equal

to 0 (i.e. {eα} are linearly independent).

2. Any x ∈ V is a (finite) linear combination of elements of {eα}.

Remark 1.6. Generally there is no way to see (construct) a Hamel basis.

THEOREM 1.14. Any linear space V admits a Basis (called the Hamel basis).

Proof. Let E = {the set of all linearly independent systems of vectors in V }. Let’s intro-

duce ordering on E: S1 ≤ S2 ⇐⇒ S1 ⊂ S2. It is easy to check that we’ve got a partial

order.

Now, let’s check that the conditions of Zorn’s Lemma are satisfied. Take a chain

{Sα}α∈A ⊂ E. Then {Sα} has an upper bound: S =
⋃

α∈A Sα. Then S is also a linearly
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independent system. (Why? Any finite linear combination in S involves finite elements,

which must all belong to some Sα0 because {Sα} is a chain. Since Sα0 is lin. indep., the

combination is trivial.) S is clearly an upper bound for {Sα}.

By Zorn’s Lemma, ∃S0 - a maximal linearly independent system. We claim S0 is a

basis. If not, ∃x ∈ V which is not in the span of S0. Then S0 ∪ {x} is a strictly bigger lin.

indep. system. This contradicts the maximality of S0. =⇒ S0 is a basis.
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2 Metric Space
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2.1 Metric Space and Normed Space

DEFINITION 2.1 (Metric Space). A metric space is a set X equipped with a given

ρ : X ×X → R (distance function (metric)) with the following properties:

1. ρ(x, y) ≥ 0 and ρ(x, y) = 0 ⇐⇒ x = y (nondegeneracy).

2. ρ(x, y) = ρ(y, x) (symmetry).

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y), ∀x, y, z ∈ X (triangle inequality).

Example 2.1. 1. X = R, ρ(x, y) = |x− y|.

2. Any set E with ρ(x, y) =


1, x ̸= y

0, x = y

.

Proposition 2.1. If X is a metric space, ∀Y ⊂ X, Y is also a metric space with the

same ρ.

Example 2.2. N ⊂ R; (a, b) ⊂ R.

DEFINITION 2.2 (Normed Space). A normed space is a linear space X equipped

with a function ∥ · ∥ : X → R with the following properties:

1. ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0.

2. ∥αx∥ = |α|∥x∥,∀x ∈ X,α ∈ R.

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (indicating ∥x− y∥ ≤ ∥x− z∥+ ∥z − y∥).

Fact: A normed space is a metric space with ρ(x, y) := ∥x − y∥. (For symmetry:

∥x− y∥ = ∥ − (y − x)∥ = | − 1|∥y − x∥ = ∥y − x∥).

Example 2.3. Rn with ∥x∥ =
√∑

x2i . Accordingly defined scalar product in Rn: (x, y) =∑
xiyi. Then ∥x∥ =

√
(x, x). Triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥ ⇐⇒ (x +

y, x+ y) = (x, x) + (y, y) + 2(x, y) ≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ ⇐⇒ (x, y) ≤
√

(x, x)(y, y)

(Cauchy-Schwarz Inequality).

Remark 2.1. A more general fact is that any scalar product space (Euclidean space) is a

normed space. So, Rn and all its subsets are metric spaces with ρ(x, y) =
√∑

(xi − yi)2.

Example 2.4. 1. C[a, b] = {cts. func. on [a, b]}. ∥f∥ = maxx∈[a,b] |f(x)|. ρ accordingly

defined.
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2. ℓ2 = {{xj} :
∑∞

j=1 |xj|2 <∞}.

3. X = {C[a, b], but equipped with the norm ∥f∥ :=
´ b
a
|f(x)|dx}.
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2.2 Topology of Metric Spaces

DEFINITION 2.3 (Ball). An open ball in a metric space X with center a ∈ X and

radius R > 0:

BR(a) = {x ∈ X : ρ(x, a) < R}.

Closed ball: B̄R(a) = {x ∈ X : ρ(x, a) ≤ R}.

Example 2.5. Any set E with ρ(x, y) =


1, x ̸= y

0, x = y

. B1/2(a) = {a}, B2(a) = E.

Example 2.6. Rn, B1(0): Euclidean. ∥x∥ = max |xi| (cube). ∥x∥ =
∑
|xi|.

From now on, let X denote a metric space.

DEFINITION 2.4 (Open Sets). A set G ⊂ X is called open if ∀a ∈ G, ∃ϵ > 0 s.t.

Bϵ(a) ⊂ G.

DEFINITION 2.5 (Closed Sets). A set E ⊂ X is closed if X \ E is open.

Example 2.7. Open sets in R:
⋃

open intervals. (Could be made possible by selecting the

intervals).

Proposition 2.2. 1.
⋃

α∈AGα is open if ∀Gα is open.

2.
⋂

α∈AEα is closed if ∀Eα is closed. (Follows from 1) and X \
⋂
Eα =

⋃
(X \ Eα)).

3. G - open, E - closed =⇒ G \ E is open.

Remark 2.2 (Metric Subspace). If X - a metric space, Y ⊂ X - a metric subspace, then

G ⊂ Y is open in Y iff G = Y ∩ G̃ with G̃ open in X. (Subspace topology). Example:

X = R, Y = [0, 1]. G = (0, 1]. This is relatively open! Not open in X. G is open in Y

since G = (0,∞) ∩ Y .

Remark 2.3. BR(a) - open. B̄R(a) - closed (in our metric space).

Proof. Choose b ∈ BR(a). Let ϵ = R − ρ(a, b). Bϵ(b) ⊂ BR(a). (Triangle inequality:

ρ(x, a) ≤ ρ(x, b) + ρ(b, a) < ϵ+ ρ(a, b) = R).

DEFINITION 2.6 (Convergence). A seq {xn} ⊂ X is convergent to a ∈ X (Notation:

lim xn = a or xn → a), if ∀ϵ > 0, ∃N s.t. ∀k > N , xk ∈ Bϵ(a). (Equivalently: ρ(xk, a)→
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0). We can say instead of Bϵ(a), “open neighborhood of a”.

DEFINITION 2.7 (Interior Point). An interior point a ∈ E is a point such that

∃Bϵ(a) ⊂ E.

E◦ := the interior of E = {the set of all its interior points}. (Open by its definition).

DEFINITION 2.8 (Exterior Point). An exterior point of E is an interior pt of X \E.

Exterior of E = (X \ E)◦ = {all exterior points}.

DEFINITION 2.9 (Boundary Point). A point a ∈ X is called a boundary point of E

if it’s neither interior nor exterior.

(i.e. Bϵ(a) contains pts both from E and X \ E).

∂E := the boundary of E = {all boundary points}.

Proposition 2.3. ∀ point a ∈ X is either interior, exterior or bdry.

DEFINITION 2.10 (Closure Point). A point a is a closure pointt for E ⊂ X, if it’s

either interior or boundary pt of E.

Ē := the closure of E = {all closure pts}.

Example 2.8. Any isolated point is a closure point. {a} ⊂ E, {ak} → {a}

Lemma 2.4. Ē = E◦ ∪ ∂E.

DEFINITION 2.11 (Accumulation Point). a ∈ X is an accumulation pt (limit pt)

for E ⊂ X, if Bϵ(a) contains a pt b ∈ E, b ̸= a. (∃{ak} ⊂ E, ak ̸= a, ak → a).

Fact: Ē is the smallest closed set containing E.

Example 2.9. 1. Let E = Q ⊂ R. E◦ = ∅, (X \ E)◦ = ∅, ∂E = R. Ē = R. ∀a ∈ R is

an accumulation pt.

2. E = (0, 1). (X \ E)◦ = (−∞, 0) ∪ (1,+∞). ∂E = {0, 1}. Ē = [0, 1]. {accumulation

pts} = [0, 1].

3. E = Z ⊂ R. E◦ = ∅. (X \E)◦ =
⋃
(n, n+ 1). ∂E = Z. Ē = Z. {accumulation pts}

= ∅.

THEOREM 2.5. Characterization of Closed Sets

Let X - a metric space, E ⊂ X. TFAE:

1. E is closed.
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2. E = Ē.

3. ∂E ⊂ E.

4. E ⊃ {accumulation pts}.

Proof left as homework.
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2.3 Continuous Map

DEFINITION 2.12 (Continuity at a Point). Let X,X ′ be two metric spaces separately

equipped with ρ, ρ′. A map f : X → X ′ is called continuous at a ∈ X if ∀ε > 0, ∃δ > 0

(depending on ε, a) s.t.

f(Bδ(a)) ⊂ Bε(f(a)).

f is called continuous if it is continuous at ∀a ∈ X.

Remark 2.4. If X = R with the standard metric, f is called a continuous function on

X.

Proposition 2.6 (Characterization of continuity). f : X → X ′ is continuous ⇐⇒ ∀G′

(open in X ′), f−1(G′) is open in X.

Proof. Left as homework.

Remark 2.5. Algebraic properties of continuous functions (f ± g, f · g, . . . ) persist with

word-by-word the same proof.

Proposition 2.7. E is closed ⇐⇒ E contains all its accumulation points.

Proof. Let E be closed. X \ E is open. Now, if a is an accumulation pt. and a ∈ X \ E.

By openness, ∃Bε(a) ⊂ X \ E =⇒ Bε(a) has no pts in E. =⇒ a is not an accum. pt.

Contradiction.

Let E contain all its accum. pts. Take a ∈ X \ E. a is not an accum. pt. If

Bε(a) ̸⊂ X \ E =⇒ Bε(a) ∩ E ≠ ∅. =⇒ a is an accum. pt. (since a /∈ E). =⇒ a ∈ E.

Contradiction. So Bε(a) ⊂ X \ E =⇒ X \ E is open.

Proposition 2.8. 1. Map f is cts ⇐⇒ f−1(G) is open for G-open.

2. Algebraic operation αf + βg, f · g, f/g(g ≠ 0) with continuous functions again gives

cts. func.

3. Composition: X
f−→ Y

g−→ Z. X, Y, Z - metric spaces. f, g - cts. g ◦ f : also cts.

Proof. (g ◦ f)−1(G) = f−1(g−1(G)) - open.
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4. f : X → Y cts ⇐⇒ f is sequentially cts. i.e. ∀a ∈ X,∀xk → a(k → ∞) we

have f(xk)→ f(a).

Proof. “⇒”: ∀ε > 0, ∃δ > 0 s.t. f(Bδ(a)) ⊂ Bε(f(a)). Since xk → a, ∃K ∈ N s.t.

ρ(xk, a) < δ, ∀k ≥ K. =⇒ xk ∈ Bδ(a) =⇒ f(xk) ∈ Bε(f(a)).

“⇐”: Suppose f is not continuous. ∃ε > 0 s.t. ∀δ > 0, f(Bδ(a)) ̸⊂ Bε(f(a)).

Choose δ = 1/k. ∃xk ∈ B1/k(a) s.t. f(xk) /∈ Bε(f(a)). xk → a but f(xk) ̸→ f(a).

Contradiction.
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2.4 Compactness

2.4.1 Compact Sets

DEFINITION 2.13 (Compact). A metric space K is called compact, if every open

covering of K admits a finite subcovering. i.e. if K =
⋃

α∈AGα (Gα open), then

∃α1, . . . , αn ∈ A s.t. K =
⋃n

j=1Gαj
.

Example 2.10. 1. K = [a, b] ⊂ R. (Heine-Borel Lemma). ✓

2. (a, b) ⊂ R is not compact. (a, b) =
⋃∞

n=1(a+
1
n
, b). No finite subcovering!

3. Any (closed) cell in Rn: C = [a1, b1]× · · · × [an, bn]. ✓

Proposition 2.9. 1. A closed set E in a compact space K is compact itself.

Proof. E ⊂
⋃

α∈AGα. Add G0 = K \E (open in K). Then K = (
⋃

α∈AGα)∪G0 is

an open covering of K. =⇒ ∃ finite subcover Gα1 , . . . , Gαn , G0. Remove from it (if

needed): G0. Then E ⊂
⋃n

j=1Gαj
. =⇒ E = E ∩ (

⋃
Gαj

) =
⋃
(E ∩Gαj

).

2. If X is a metric space, K ⊂ X is a compact subspace, then K is closed.

Proof. Choose a ∈ X \K. ∀b ∈ K, ∃BRb
(a), Brb(b) s.t. BRb

(a) ∩ Brb(b) = ∅. (Re-

mark: metric spaces have the Hausdorff Property: ∀a, b ∈ X, a ≠ b, ∃Bϵ(a), Bδ(b)

s.t. Bϵ(a) ∩ Bδ(b) = ∅). Trivially: K ⊂
⋃

b∈K Brb(b). =⇒ ∃ finite subcovering

K ⊂
⋃m

j=1Brbj
(bj) =: V . Let G =

⋂m
j=1BRbj

(a). G is an open ball (intersection

of finite open balls around a, we take min radius). G ∩ V = ∅ =⇒ G ∩K = ∅.

G ⊂ X \K =⇒ X \K is open.

3. X - metric space, K ⊂ X - compact. Then K is bounded. (i.e. K ⊂ BR(a)).

Proof. K ⊂
⋃

a∈K B1(a) =
⋃

x∈K B1(x). =⇒ finite subcover K ⊂
⋃N

j=1B1(xj).

=⇒ bounded.

Corollary 2.10. K ⊂ Rn is compact ⇐⇒ K is bounded and closed.

Remark 2.6. Very different for ∞-dim op!
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DEFINITION 2.14 (Centered System). Let {Fα}α∈A be a system of subsets in a

metric space X. Then it’s called centered if any finite intersection is non-empty. i.e.

∀α1, . . . , αn ∈ A,
⋂n

j=1 Fαj
̸= ∅.

THEOREM 2.11. K is compact ⇐⇒ any centered system of closed subsets of K has

a nonempty intersection.

Proof. “⇒”: Suppose a centered system of closed subsets {Aα} of K, s.t.
⋂
Aα = ∅.

=⇒ K = K \ ∅ = K \
⋂
Aα =

⋃
(K \ Aα). K \ Aα are open. =⇒ ∃ finite subcover

K =
⋃n

j=1(K \Aαj
) = K \

⋂n
j=1Aαj

. =⇒
⋂n

j=1Aαj
= ∅. It’s not centered! Contradiction.

“⇐”: Suppose K =
⋃
Gα, Gα: open subset of K. Let Aα = K \ Gα. If {Gα}

has no finite subcover, then
⋂n

j=1Aαj
= K \

⋃n
j=1Gαj

̸= ∅. =⇒ {Aα} is centered.

=⇒
⋂
Aα ≠ ∅ (by assumption). =⇒ K \

⋃
Gα ̸= ∅ =⇒ K ̸=

⋃
Gα. Contradiction.

2.4.2 Sequential Compactness

DEFINITION 2.15 (Sequentially Compact). A metric space K is called sequen-

tially compact, if every infinite subset E ⊂ K has a limit point (accumulation point).

(Equivalently: any sequence {an} ⊂ K contains a convergent subsequence).

Claim: A sequentially compact K is complete.

Proof. Take a Cauchy seq {an} ⊂ K. {an} has a convergent subsequence ank
→ a.

∀ϵ > 0, ∃N ∈ N : ∀k, l > N it holds ρ(ak, al) < ϵ. So choose nk > N s.t. ρ(ank
, a) < ϵ.

ρ(am, a) ≤ ρ(am, ank
) + ρ(ank

, a) < 2ϵ.

THEOREM 2.12. K is compact ⇐⇒ K is sequentially compact. Summary of

equivalence: K is compact ⇐⇒

1. K is sequentially compact.

2. K is complete and totally bounded.

3. (In Rn) K is closed and bounded.

Example 2.11 (Counter Example for dim X =∞). K = B̄1(0) in X = C[0, 2π] (Banach,

complete normed). Consider fn(x) = sinnx ∈ K. ∥fn∥ = 1. Consider ∥fn − fm∥ =
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max | sinnx− sinmx|. For n ≠ m,
´ 2π
0

(sinnx− sinmx)2dx = 2π. Integral ↛ 0. =⇒ no

subsequence converging with uniform norm. K is not compact!
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2.5 Totally Boundedness

DEFINITION 2.16 (Totally Bounded). A metric space K is called totally bounded,

if ∀ϵ > 0, ∃ a finite ϵ-net for K. Set E = {x1, . . . , xm} s.t. ∀x ∈ K, ∃xj ∈ E : ρ(x, xj) < ϵ.

In other words: K =
⋃m

j=1Bϵ(xj).

Proposition 2.13. If K is totally bounded, then any A ⊂ K is totally bounded.

Proof. ∀ϵ > 0, take a finite ϵ/2-net E ⊂ K for K. E = {x1, . . . , xm}. Now, if

Bϵ/2(xj) ∩ A = ∅, remove it. If Bϵ/2(xj) ∩ A ≠ ∅, choose yj ∈ Bϵ/2(xj) ∩ A. Then

E ′ = {all chosen yj} ⊂ A is an ϵ-net for A. (∀z ∈ A,∃xj ∈ E : ρ(z, xj) < ϵ/2. Also

ρ(yj, xj) < ϵ/2. ρ(z, yj) < ϵ).

Proposition 2.14. Totally bounded K is separable.

Proof. Let En be a finite 1/n-net for K. Let E =
⋃∞

n=1En. E is a countable union of

finite sets =⇒ countable. E ⊂ K. E is countable dense subset by def.

Corollary 2.15. Totally bounded K has a countable base.

Proposition 2.16. If K is sequentially compact, then K is totally bounded.

Proof. Assume by contradiction: ∃ϵ > 0, no finite ϵ-net for K. Pick x1 ∈ K. {x1} is not

an ϵ-net. =⇒ ∃x2, ρ(x1, x2) ≥ ϵ. E2 = {x1, x2} is not an ϵ-net. =⇒ ∃x3, ρ(x3, xj) ≥

ϵ, j = 1, 2. We could get a sequence {xn} s.t. ρ(xn, xm) ≥ ϵ,∀n ̸= m. =⇒ no convergent

subsequence.

Proposition 2.17. If K is a space with a countable base, then K is compact ⇐⇒ K is

sequentially compact.

Proof. 1st “⇒”: obvious (from general topology). 2nd “⇐”: Let K =
⋃
Gα, Gα - open.

{Vj}j∈N a countable base. Then ∀Gα is some union of {Vj}. Take those Vj: only those

which are “necessary” for forming {Gα}α∈A. Countable subcovering {Vjk}k∈N. Now,

{Vjk} is a countable covering of K. If we prove that countable covering admits a finite

subcovering, then we are done. Actually, we just need to check the compactness of K
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on countable centered system of closed subsets. (Proof similar to arbitrary centered

system).

Proposition 2.18. If K is sequentially compact, then it’s compact.

Proof. By the above prop, K is seq. cpt =⇒ K is complete =⇒ K is separable =⇒ K

has a countable base. By the last prop, to check the compactness of K, only need to show:

Countable centered system of closed subsets {Fj} has
⋂
Fj ̸= ∅. Choose xj ∈ Fj, ∀j. {xj}

a seq in K =⇒ {xj} contains a convergent subseq xnk
→ x. Since Fj contains nearly all

the terms in {xnk
} (except for finite exceptions in the front of the seq), x is a closure pt

of Fj, ∀j. Since ∀Fj is closed =⇒ x ∈ Fj, ∀j. =⇒ x ∈
⋂
Fj ̸= ∅.

THEOREM 2.19. Main Theorem on Compactness

Let K be a metric space. TFAE:

1. K is compact.

2. K is sequentially compact.

3. K is complete and totally bounded.

Proof. (1) ⇐⇒ (2): Proved above. (2) =⇒ (3): Proved (seq cpt =⇒ complete; seq

cpt =⇒ tot bdd). (3) =⇒ (2): We need to prove that any infinite subset E ⊂ K has an

accumulation pt. K is totally bounded =⇒ choose a finite 1-net. K =
⋃N

j=1B1(yj). One

of the balls contains ∞ elements of E. Fix it and call it K1. K1 ⊂ K - tot bdd. Choose

in K1 a finite 1/2-net. K1 ⊂
⋃
B1/2(zj). One of the balls contains ∞ elts of E. Fix it

and call it K2. Get a seq K ⊃ K1 ⊃ K2 ⊃ . . . Kn is a ball of radius 1/n (contains ∞ elts

of E). Let’s “double” all these balls! (Consider closures). Kn ⊂ An = B̄1/n(·). Now, by

the nested ball principle:
⋂∞

n=1An = {a}. a is a limit of an ∞ seq in E. =⇒ a is an

accumulation pt.
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2.6 Continuous Functions on Compact Sets – C(K)

C(K) := {continuous f : K → R}.

2.6.1 Properties of C(K)

Proposition 2.20. Let f ∈ C(K), K - compact.

1. f is bounded on K.

Proof. Assume rather: ∀n ∈ N,∃xn ∈ K : |f(xn)| > n. {xn} ⊂ K =⇒ ∃ converg.

subseq xnk
→ a. f -continuous =⇒ f(xnk

) → f(a). But |f(xnk
)| > nk → ∞.

Contradiction.

2. f attains its max and min.

Proof. f - bounded. Let M = supx∈K f(x). Claim: ∃x0 ∈ K : f(x0) =M . Indeed,

by contrad, let f(x) < M,∀x. Consider g(x) = 1
M−f(x)

. g ∈ C(K). =⇒ g is

bounded on K. g(x) ≤ C. 1
M−f(x)

≤ C =⇒ M − f(x) ≥ 1
C

=⇒ f(x) ≤ M − 1
C
.

Contradicts M = sup f(x). Similarly, m = min f(x).

3. f is uniformly continuous. (i.e. ∀ϵ > 0, ∃δ > 0 : ∀x, y with ρ(x, y) < δ, it holds

|f(x)− f(y)| < ϵ).

Proof. Assume, by contrad: ∃ϵ > 0, ∀δ > 0, ∃xδ, yδ : ρ(xδ, yδ) < δ but |f(xδ) −

f(yδ)| ≥ ϵ. Pick δ = 1/k, k ∈ N. ρ(xk, yk) < 1/k. But there exists convergent seq

xnk
→ a. ρ(ynk

, a) ≤ ρ(ynk
, xnk

) + ρ(xnk
, a)→ 0. So ynk

→ a. |f(xnk
)− f(ynk

)| →

|f(a)− f(a)| = 0. But |f(xnk
)− f(ynk

)| ≥ ϵ. Contradiction.

Remark 2.7. Properties 1 & 3 identically hold for func-s valued in metric space. (e.g.

f : K → Y ). For ex. for C-valued funcs.

C(K) := {continuous f : K → R}.

Let ∥f∥ = maxx∈K |f(x)|. ρ(f, g) = ∥f − g∥ = max |f(x)− g(x)|.

C(K) is a normed space.

Proposition 2.21. C(K) is a Banach space (i.e. it’s complete).
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Proof. Same proof as in Calculus. If {fn} is a Cauchy sequence in C(K) =⇒ {fn} is

uniformly Cauchy. =⇒ ∃ lim fn(x) = f(x) on K. f ∈ C(K). ∥fn − f∥ → 0.

2.6.2 Compactness in C(K)

DEFINITION 2.17 (Equicontinuity). A set E ⊂ C(K) is called equicontinuous, if

∀ϵ > 0, ∃δ > 0 : ∀f ∈ E, with ρ(x, y) < δ it holds |f(x)− f(y)| < ϵ.

Example 2.12. Let E = {f ∈ C1[a, b] : max |f ′(x)| ≤ M}. Then |f(x) − f(y)| =

|f ′(ξ)||x− y| ≤M |x− y|. ∀ϵ > 0, take δ = ϵ/M . E - equicontin.

DEFINITION 2.18 (Precompact). A set E in a metric sp X is called precompact if

Ē is compact.

THEOREM 2.22 (Arzelà-Ascoli Theorem). A set E ⊂ C(K) is precompact ⇐⇒ E is

bounded and equicontinuous. (Unif. bdd: ∃M : ∀f ∈ E, ∀x ∈ K, |f(x)| ≤M).

Proof. “⇒”: Let E be precompact. Ē is cpt =⇒ Ē is closed & bdd. WTS: equicontin.

Use ϵ/3-net for Ē: f1, . . . , fn. ∀f ∈ E, take a fj : ∥f−fj∥ < ϵ/3. {f1, . . . , fn} is equicontin

on K (finite set of cts functions). ∃δ : ∀x, y, ρ(x, y) < δ, it holds |fj(x) − fj(y)| < ϵ/3.

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)| < ϵ/3 + ϵ/3 + ϵ/3 = ϵ.

“⇐”: Given E-bounded, equicontin. WTS: any seq {fn} ⊂ E contains a convergent

subseq. Proof: 1. K is separable (since K-cpt). Let S = {xj}∞j=1 ⊂ K be dense. 2.

Fix {fn}. ∀j ∈ N, {fn(xj)}n is bdd (boundedness of E). =⇒ contains a convergent

subseq. 3. Use “Cantor’s diagonal trick”: Get {fnk
} a subseq of {fn}, converging on

S pointwise. Let’s prove that {fnk
} is the desired converg. subseq (uniformly). Take

∀ϵ > 0. By equicontin. of E,∃δ > 0: ∀x, y, ρ(x, y) < δ it holds |g(x)−g(y)| < ϵ/3, ∀g ∈ E.

K =
⋃

x∈S Bδ(x). Since K cpt =⇒ finite subcover Bδ(x1), . . . , Bδ(xm). {fnk
} is converg.

pointwise on {x1, . . . , xm}. Since {x1, . . . , xm} is finite =⇒ converg. unif. on this set.

=⇒ ∃N,∀k, l > N, |fnk
(xj)−fnl

(xj)| < ϵ/3, ∀j = 1, . . . ,m. Now take ∀y ∈ K. y ∈ Bδ(xj)

for some j. |fnk
(y)− fnl

(y)| ≤ |fnk
(y)− fnk

(xj)|+ |fnk
(xj)− fnl

(xj)|+ |fnl
(xj)− fnl

(y)| <

ϵ/3 + ϵ/3 + ϵ/3 = ϵ. =⇒ unif. conv.
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2.6.3 Approximation in C(K)

THEOREM 2.23 (Weierstrass Approximation Theorem). ∀f ∈ C[a, b], ∃{Pn(x)} - seq

of polys s.t. Pn(x) ⇒ f(x). (e.g. Bernstein Polyn-s).

What about K ⊂ Rn? f ∈ C(K)?

DEFINITION 2.19 (Algebra of Functions). A subset A ⊂ C(K) is called an algebra

if it is a lin. sp + closed under multiplication.

Example 2.13. The algebra of polynomials in Rn for K ⊂ Rn.

Simple Property: Ā is also an algebra in C(K).

THEOREM 2.24 (Stone-Weierstrass Theorem). Let A ⊂ C(K) be an algebra, 1 ∈ A,

which separates pts: ∀x ≠ y, ∃f ∈ A : f(x) ̸= f(y). Then Ā = C(K). (i.e. A dense in

C(K)).

Proof. Switching from A to Ā, we may assume A to be closed. Step 1: Prove if f ∈ A

then |f | ∈ A. Consider t ∈ [0, 1]. Let pn(t) →
√
t (Taylor series of

√
1 + x shifted).

∥f∥ ≤ M . W.l.o.g M = 1.
√
f 2 = |f |. pn(f

2) ∈ A. pn(f
2) ⇒ |f |. Since A closed,

|f | ∈ A.

Step 2: max(a, b) = a+b+|a−b|
2

, min(a, b) = a+b−|a−b|
2

. ∀f, g ∈ A =⇒ max(f, g) ∈

A,min(f, g) ∈ A. By induction, max(f1, . . . , fn) ∈ A.

Step 3: Take ∀f ∈ C(K). Let’s prove f ∈ A. Take ∀ϵ > 0. Note: ∀p, q ∈ K, p ≠ q,

∃h ∈ A : h(p) ̸= h(q). By switching h→ αh+ β ∈ A, we may obtain h(p) = f(p), h(q) =

f(q). (Solve system: αh(p) + β = f(p), αh(q) + β = f(q)). Let this function be hp,q.

hp,q(p) = f(p), hp,q(q) = f(q). =⇒ ∃Up,q, Vp,q - neighborhoods of p, q respectively. In both

nbds, we have hp,q(x) < f(x) + ϵ. Fix p, vary q. {Vp,q}q open covering of K. =⇒ finite

subcovering Vp,q1 , . . . , Vp,qn . Set gp = min{hp,q1 , . . . , hp,qn} ∈ A. gp(x) < f(x) + ϵ, ∀x ∈ K.

Also, gp(p) = f(p) > f(p)− ϵ. =⇒ ∃Up nbd of p, s.t. gp(x) > f(x)− ϵ,∀x ∈ Up. {Up}p

open covering of K =⇒ finite subcovering Up1 , . . . , Upm . Set g = max{gp1 , . . . , gpm} ∈ A.

Directly follows: |g(x)− f(x)| < ϵ. g is an ϵ approx of f =⇒ f ∈ Ā = A.
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3 Measure

In the next few chapters, we embark on a journey into the fundamental concepts of

measure.

This theory, developed by Henri Lebesgue at the beginning of the 20th century, provides

a more robust and general framework for integration than the Riemann integral, allowing

us to integrate a wider class of functions and providing powerful convergence theorems

essential for modern analysis and probability theory. His theory was published originally

in his dissertation Intégrale, longueur, aire (”Integral, length, area”) at the University of

Nancy during 1902.
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3.1 Semi-ring, Ring, Algebra, σ-Algebra, Borel σ-

Algebra

DEFINITION 3.1 (Semi-ring of Sets). A system of sets S is called a semi-ring if it

satisfies the following two axioms:

1. If A,B ∈ S, then A ∩B ∈ S.

2. If A,B ∈ S, then there exist disjoint sets A1, A2, . . . , An ∈ S such that

A \B =
⊔n

i=1Ai.

Example 3.1 (Semi-open Cell in Rn). I1, I2, . . . , In: intervals in R. C := I1 × I2 × . . .× In

is called a cell in Rn.

semi-open interval: an interval that is closed at one end and open at the other end,

e.g., [a, b) or (a, b].

Let S be the collection of all semi-open cells in Rd (not required to be finite!), i.e.

S = {[a1, b1)× · · · × [an, bn) : ai, bi ∈ R, ai < bi}. Then S is a semi-ring.

Warning: Be cautious about the directions of semi-open cells! The directions of all

cells must coincide.

Question: Can we take all closed/open cells in Rn?

Answer: NO! For example, [0, 1] ∩ [1, 2] = {1}, (0, 1) \ (1/2, 1) = (0, 1/2], both result

in some elements not in the original system.

Proposition 3.1. If S is a semi-ring, then

1. ∅ ∈ S.

2. Axiom 2 can be strengthened to: ∀A ∈ S, ∀A1, A2, . . . , An ∈ S,Aj ∈ A,∀j, disjoint,

there exist disjoint sets Am+1, Am+2, . . . , As ∈ S such that A =
⊔s

i=1Ai.

Proof. 1. ∅ = A \ A.∀A ∈ S.

2. One can prove by induction on m: splitting the whole area A into disjoint parts. It

is easier to prove for the semi-ring {all cells in Rn}.

Remark 3.1. We now show that with axiom 1 and the strengthened condition above we

could say S is a semi-ring.
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Proof. Now axiom 1 is satisfied.

Suppose A,B ∈ S, then A \B = A (A ∩B). Let A1 = B, n = 1. By our strengthened

condition, one could find disjoint sets A2, A3, . . . , As ∈ S, s.t. A =
⊔s

i=1Ai, i.e. A \B =⊔s
i=2Ai. ✓

Thus, we have the following equivalent definition for semi-rings.

DEFINITION 3.2 (Semi-ring of Sets - Alternative Definition). A system of sets S is

called a semi-ring if it satisfies the following two axioms:

1. If A,B ∈ S, then A ∩B ∈ S.

2. ∀A ∈ S, ∀A1, A2, . . . , An ∈ S,Aj ⊂ A,∀j, disjoint, there exist disjoint sets

Am+1, Am+2, . . . , As ∈ S such that A =
⊔s

i=1Ai.

DEFINITION 3.3 (Semi-ring with Unity). A semi-ring S is called a semi-ring with

unity if S ∈ 2Ω(↔ ∀A ∈ S,A ∈ Ω) and Ω ∈ S for some set Ω. Ω is called the unity of S.

Indeed, Ω ∩ A = A, ∀A ∈ S.

Example 3.2. 1. A semi-ring with unity

The semi-ring of all semi-open cells in Rn (To be more precise, we need to add the

element Rn into it. For convenience, we won’t clarify this much in the future. The

reader should always keep this unity in mind.) is a semi-ring with unity Rn.

2. A semi-ring WITHOUT a unity

The semi-ring of all finite semi-open cells in Rn: NO unity (Rn)!

DEFINITION 3.4 (Ring of Sets). A system of sets R is called a ring if it satisfies the

following two axioms:

1. ∀A,B ∈ R, A ∩B ∈ R.

2. ∀A,B ∈ R, A△B = (A \B) ∪ (B \ A) ∈ R.

In fact, a ring R is closed under set difference and finite unions.

1. ∀A,B ∈ R, A \B = A△(A ∩B) ∈ R.

2. ∀A,B ∈ R, A ∪B = (A△B)△(A ∩B) ∈ R.

Conversely, we can derive being closed under set intersection and symmetric difference

based on being closed under set difference and finite unions as follows:
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1. ∀A,B ∈ R, A ∩B = ((A ∪B) \ (A \B)) \ (B \ A) ∈ R.

2. ∀A,B ∈ R, A△B = (A ∪B) \ (A ∩B) ∈ R.

As a result, we arrive with the same definition of ring requiring closeness under set

difference and finite unions.

DEFINITION 3.5 (Ring of Sets - Alternative Definition). A system of sets R is called

a ring if it satisfies the following two axioms:

1. ∀A,B ∈ R, A \B ∈ R.

2. ∀A,B ∈ R, A ∪B ∈ R.

Example 3.3. A semi-ring but NOT a ring

The semi-ring of all cells in Rn: not ensuring the closeness under union!

DEFINITION 3.6 (Algebra). A ring with unity is called an algebra of sets.

Example 3.4. A ring but NOT an algebra

Consider R = {A ⊂ N : |A| < +∞}. R is a ring, but N /∈ R, which means it doesn’t

have a unity.

Proposition 3.2. 1. A ring is a semi-ring.

2. ∀ system of sets P , ∃ a minimal ring R(P ) ⊃ P .

Proof. 1. Let R be a ring. Then ∀A,B ∈ R, A \B = A \B(!) = A△(A ∩B) ∈ R.

2. Start with R0 = 2Ω, where Ω is the union of all sets in P . Let {Rα} be the collection

of all rings containing P . Then R(P ) :=
⋂

αRα is the minimal ring containing P (it is

clearly again a ring!).

Proposition 3.3. Let S be a semi-ring, then

R(S) = {
m⋃
j=1

Aj, Aj ∈ S,m ∈ N : arbitrary} ⇔ {
s⊔

j=1

Aj, Aj ∈ S, s ∈ N : arbitrary}

Proof. ”⇔”:

Firstly, the claimed system R(S) is indeed a ring.

A = ⊔Sj=1Aj, B = ⊔mi=1Bi, A ∩B = ⊔i,j(Aj ∩Bi) ∈ S ⊂ R(S).

⇒ A△B = (A \B) ∩ (B \ A) = ⊔m
j=1 ∩mi=1 (Aj \Bi) ∈ S ⊂ R(S).

cbna 36 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Real Analysis 3 Measure

Thus, R(S) is a ring.

Next, ∀ other ring R̃(S) containing S, it must contain all elements of R(S).

i.e. R̃(S) ⊃ R(S) ⇒ R(S) is the minimal ring containing S.

DEFINITION 3.7 (σ-algebra). A system of sets A is called a σ-algebra1 if

1. A ⊂ 2Ω,Ω ∈ A;

2. A is an algebra with unity Ω;

3. ∀A1, A2, . . . (finite or infinite family of sets!) with ∀j : Aj ∈ A it holds ∪∞j=1Aj ∈ A.

Proposition 3.4. 1. A σ-algebra is closed under taking the implement: Ac = Ω\A ∈ A

since a σ-algebra is a ring with unity Ω. It is closed under set difference.

2. ∅ ∈ A since ∅ = Ωc or ∅ = Ω \ Ω.

3. A σ-algebra is closed under finite or countable union thanks to its definition and the

fact that ∅ ∈ A

4. A σ-algebra is closed under finite or countable intersection:

∀A1, A2, . . . (finite or infinite family of sets!) with ∀j : Aj ∈ A, we have

∩∞j=1Aj = Ω \ ∪∞
j=1(Ω \ Aj) ∈ A

5. A σ-algebra is closed under countable symmetric difference.

Question: What are the minimal conditions we need to define/prove a σ-algebra?

Answer: I prefer the following three minimal conditions:

1. Unity: Ω ∈ A.

2. Closed under taking complement: If A ∈ A, then Ac = (Ω \ A) ∈ A.

3. σ-additivity: If A1, A2, . . . ∈ A, then
⋃∞

j=1Aj ∈ A.

Proposition 3.5. ∀S ∈ 2Ω, ∃! minimum σ-algebra A(S) ⊃ S.

Proof. Similar as the proof for R(S).

Upshot 1:

In general:

System of sets⇒ Semi-ring ⇒ Ring ⇒ Algebra with unity ⇒ σ-Algebra.

Now, start with a semi-ring with unity S

1The terms field and σ-field are sometimes used in place of algebra and σ-algebra.
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→ could generate a ring R(S) (still equipped with a unity Ω)

→ A ring with unity is actually an algebra with unity!

→ An algebra of sets: A(R(S)) = A(S).

Upshot 2:

A system of sets S

→ ensuring the two axioms: closeness under intersection and being able to be decom-

posed into some disjoint subsets

→ A semi-ring!

→ could generate a ring R(S)!

→ A ring which satisfies closeness under: (intersection and symmetric difference) or

(union and difference)

→ equip with a unity

→ An algebra of sets!

DEFINITION 3.8 (Borel σ-algebra). The Borel σ-algebra on Rn is defined as the

minimum σ-algebra containing all open sets in Rn, denoted as B(Rn). And the elements

in B(Rn) are called Borel sets.

Note that B(Rd) also contains all closed sets in Rd since it is closed under difference

(open → semi-open → closed).

Thus, an alternate definition of B(Rd) is the minimum σ-algebra containing all closed

sets in Rd.

In advanced probability theory, we focus on such Borel σ-algebra to study all possible

events. One can find more in Foundations of the Theory of Prabability by A.N.Kolomogorov.
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3.2 Measure, Measure Space

3.2.1 Measure

DEFINITION 3.9 (Measure on a Semi-Ring). Let S be a semi-ring. A function

µ : S → [0,+∞) is called a (finitely additive) measure on S if it satisfies the following

two axioms:

1. (Non-negativity) ∀A ∈ S, µ(A) ≥ 0.

2. (Finite Additivity) If A,A1, A2, . . . , An ∈ S such that A =
⊔n

j=1Aj, then µ(A) =∑n
j=1 µ(Aj).

Proposition 3.6. 1. µ(∅) = 0.

2. ∀A,B ∈ S,A ⊂ B, we have µ(A) ≤ µ(B).

Proof. 1. ∅ = ∅ ∪ ∅ ⇒ µ(∅) = 2µ(∅).

2. Since S is a semi-ring, there exist A1, A2, . . . , Am ∈ S, s.t. B \ A =
⊔p

l=1Aj

⇒ B = A
⊔
(
⊔p

j=1Aj)⇒ µ(B) = µ(A) + Σp
j=1µ(Aj) ≥ µ(A).

Example 3.5. On the semi-ring {all finite semi-open cells in Rn}, we define a measure as

follows:

A finite semi-open cell C = I1×I2×. . .×In in Rn, define µ(C) := l(I1)×l(I2)×. . .×l(In),

where l(I) :=length of I and we are measuring the cell’s ”volume”.

Such µ is called the Lebesgue measure on all finite semi-open cells in Rn.

Proposition 3.7. ∀ measure on a semi-ring S can be extended (with identical proerties)

to R(S).

Proof. For A = ⊔m
j=1Aj ∈ R(S) with Aj ∈ R(S), define µ(A) := Σm

j=1µ(Aj). (We

need to firstly deal with Aj ∈ S, and then gradually scan the whole R(S) based on

measure-already-defined sets.)

Well-defined (Correctness): Suppose A = ⊔p
j=1Aj = ⊔si=1A

′
i. We have
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Σp
j=1µ(Aj) = {using the finite additivity of µ, and Aj = Aj ∩ A = ⊔si=1(Aj ∩ A′

i)}

= Σp
j=1(Σ

s
i=1µ(Aj ∩ A′

i)) = Σs
i=1(Σ

p
j=1µ(A

′
i ∩ Aj)) = Σs

i=1µ(A
′
i). ✓

Non-negativity: Clearly, µ(A) ≥ 0. ✓

Finite Additivity: Suppose A,B ∈ R(S) : A ∩B = ∅. A = ⊔pj=1Aj, B = ⊔qi=1Bj, with

Aj, Bi ∈ S.

⇒ A ⊔B = (⊔p
j=1Aj) ⊔ (⊔q

i=1Bi)

⇒ µ(A ⊔B) = Σp
j=1µ(Aj) + Σq

i=1µ(Bi)

Same for finite union of sets. ✓

Proposition 3.8. (Proerties of a Measure on a ring R)

1. µ(∅) = 0.

2. If A,B ∈ R,A ⊂ B, then µ(A) ≤ µ(B).

3. (Semi-Additivity) If A ⊂ ∪n
j=1Aj, with A,Aj ∈ R, then µ(A) ≤ Σn

j=1µ(Aj).

Now, switch from
⋃n

j=1 to
⊔n

j=1:

Set A′
1 := A1, A

′
2 := A2 \ A1, A

′
3 := A3 \ ∪2

j=1Aj, . . .

Now, we have
⋃n

j=1Aj =
⊔n

j=1A
′
j.

Thus, A ⊂
⊔n

j=1A
′
j (even more: A = (

⊔n
j=1A

′
j)
⋂
A =

⊔n
j=1(A

′
j

⋂
A) !).

Then, µ(A) =
⊔n

j=1 µ(A
′
j

⋂
A) ≤ Σn

j=1µ(A
′
j) ≤ Σn

j=1µ(Aj).

Remark 3.2. Question: Could prop. 5.30 (3) maintain for a measure on a semi-ring?

Why?

Answer: NO!!! The key difference between a semi-ring and a ring is that: in a semi-ring

S, the diffence between sets may not belong to S, which means though they could be

represented as disjoint unions of sets in S, they do NOT have measure defined on them!

Then the inequality chain cannot go forward anymore.

Remark 3.3. Upshot: What we have done so far:

On a semi-ring S: we can define a finite-additive measure

→ extend to the whole ring generated by S: R(S)
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3.2.2 σ-Additivive Measure

DEFINITION 3.10 (σ-additivity). A measure µ on a semi-ring S is called to satisfy

σ-additivity (countable-additivity) if for any A ∈ S, {Aj}∞j=1 ⊂ S such that A =⊔∞
j=1Aj, we have µ(A) =

∑∞
j=1 µ(Aj).

Warning: A σ-algebra is not necessarily σ-additive!

Remark 3.4 (Semi-σ-additivity). σ-additivity always implies semi-σ-additivity (some-

times also called subadditivity):

∀A ⊂
⋃∞

j=1Aj, A,Aj ∈ S, µ(A) ≤ Σ∞
j=1µ(Aj).

And more importantly, finite additivity implies semi-σ-additivity also!

Example 3.6. 1. Let Ω = N, S = 2Ω. Define µ(A) := Σj∈Apj, where pj is the “weight”

assigned to element j ∈ N satisfying Σ∞
j=1pj = 1 (or any finite number). Then µ is a

σ-additive measure on S.

2. Let Ω = N, S = 2Ω. Define µ(A) := |A| (if A is infinite, µ(A) := +∞). Then µ is a

σ-additive measure on S. (View ”weight” being 1 for all elements. This is the case

violating the requirement ”Σ∞
j=1pj = any finite number” in example 1.)

3. (Lebesgue measure on all finite semi-open cells in Rn)

Let S = {all finite semi-open cells in Rn}. We know that S is a semi-ring.

µ(C) := l(I1)× l(I2)× . . .× l(In), where l(I) :=length of I.

Then µ is a σ-additive measure on S.

Proof. We already know that µ is a measure on the semi-ring S. µ is finitely additive.

Suppose A ∈ S, {Aj}∞j=1 ∈ S,A = ⊔∞j=1Aj.

WTS: µ(A) = Σ∞
j=1Aj

Step 1: ∀n ∈ N, A ⊃ ⊔nj=1Aj

⇒ Σn
j=1µ(Aj) = {finit− additivity} = µ(⊔n

j=1Aj) ≤ µ(A)

⇒ Take limit n→∞, we have Σ∞
j=1µ(Aj) ≤ µ(A). ✓

Step 2: Let A = [α1, β1)×· · ·× [αn, βn) be a finite semi-open cell in Rn, and suppose

A =
⊔∞

j=1Aj, where each Aj is also a semi-open cell, and the Aj’s are pairwise

disjoint.
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Step 2.1: Partition of A into uniform subcells.

For each integer m ≥ 1, divide each coordinate interval [αi, βi) into m equal

subintervals: I
(m)
i,ki

=
[
αi + ki(βi − αi)/m, αi + (ki + 1)(βi − αi)/m

)
, ki =

0, 1, . . . ,m− 1.

Define the finite family of subcells Qm =
{
Q

(m)
k = I

(m)
1,k1
×· · ·×I(m)

n,kn
: 0 ≤ ki ≤ m−1

}
.

Then the cells in Qm are pairwise disjoint and satisfy A =
⊔

Q∈Qm
Q.

In fact, |Qm| = mn, which is finite. By finite additivity of µ, µ(A) =
∑

Q∈Qm
µ(Q).

Step 2.2: Classification of subcells.

For each Q ∈ Qm, there are two possibilities:

1. Q ⊂ Aj for some j;

2. Q intersects at least two distinct sets Aj1 , Aj2 .

Let Q(1)
m = {Q ∈ Qm : ∃j, Q ⊂ Aj},Q(2)

m = Qm \ Q(1)
m .

Define A
(1)
m =

⋃
Q∈Q(1)

m
Q,A

(2)
m =

⋃
Q∈Q(2)

m
Q.

Then A = A
(1)
m

⊔
A

(2)
m , and by finite additivity, µ(A) = µ(A

(1)
m ) + µ(A

(2)
m ).

Step 2.3: Estimate of µ(A
(1)
m ).

Since every Q ∈ Q(1)
m is contained in some Aj, and all Q’s are disjoint, µ(A

(1)
m ) =∑

Q∈Q(1)
m
µ(Q) ≤

∑∞
j=1 µ(Aj).

Step 2.4: Estimate of µ(A
(2)
m ).

Each Q ∈ Q(2)
m intersects at least two distinct cells Aj1 , Aj2 . Thus, every such Q

intersects the boundary of some Aj.

Denote Γ =
⋃∞

j=1 ∂Aj . Each ∂Aj is contained in a finite union of (n−1)–dimensional

hyperrectangles parallel to the coordinate axes; hence Γ is a countable union of such

hyperrectangles. Therefore, µ(Γ) = 0.

Let δm = maxi
βi−αi

m
be the mesh size of the partition Qm. Then A

(2)
m is contained

in the δm–neighborhood of Γ inside A. Because Γ has measure zero, for any ε > 0

there exists η > 0 such that the η–neighborhood of Γ has µ–measure less than ε.

For all sufficiently large m (namely m > (maxi(βi − αi))/η), we have δm < η and

hence µ(A
(2)
m ) < ε. This shows limm→∞ µ(A

(2)
m ) = 0.

Combining above, µ(A) = µ(A
(1)
m ) + µ(A

(2)
m )le

∑∞
j=1 µ(Aj) + µ(A

(2)
m ), and letting
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m→∞ gives µ(A) ≤
∑∞

j=1 µ(Aj). ✓

4. (Finitely Additivive BUT NOT σ-Additive)

Let Ω = (0, 1)∩Q. Define the collection R = {A ⊂ Ω : A is finite or co-finite in Ω},

where “co-finite” means that Ω \ A is finite. Then R is a ring, since the family of

all finite or co-finite subsets of any countable set is closed under finite unions and

differences.

Define µ : R → [0,∞) by µ(A) = 0, if A is finite; 1, if A is co-finite in Ω.

We verify that µ is finitely additive.

If A,B ∈ R are disjoint, then:

1. If both A and B are finite, A ∪B is finite, so µ(A ∪B) = 0 = µ(A) + µ(B).

2. If one is finite and the other co-finite, their union is co-finite, so µ(A ∪B) = 1 =

µ(A) + µ(B).

3. It is impossible for two disjoint co-finite subsets to exist in Ω, so no contradiction

arises.

Hence µ is finitely additive.

Now enumerate Ω = {q1, q2, q3, . . . } and set Aj = {qj}.

Then each Aj is finite, hence µ(Aj) = 0. Also note that Ω =
⊔∞

j=1Aj.

If µ were σ-additive, we would have µ(Ω) =
∑∞

j=1 µ(Aj) = 0. But by definition

µ(Ω) = 1. Therefore µ FAILS to be σ-additive, even though it is finitely additive.

Remark 3.5. A measure µ with σ-additivity on S could extend to a measure with σ-

additivity on R(S) by defining µ
(⊔m

j=1Aj

)
:= Σm

j=1µ(Aj), with Aj ∈ S: disjoint.

While σ-additivity of µ on R(S) can be derived from σ-additivity on S, note that we

still have the weaker condition satisfied: semi-σ-additivity, i.e. ∀A ⊂ ∪∞
j=1Aj, A,Aj ∈

R(S), µ(A) ≤ Σ∞
j=1µ(Aj).

3.2.3 Outer Lebesgue Measure

Setting: S - semi-ring with unity Ω; µ - σ-additive measure on S; R(S) = A(S) - the

minimum algebra containing S.
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DEFINITION 3.11 (Outer Lebesgue Measure). Let µ be a σ-additive measure on a

semi-ring S with unity Ω (so, S ⊂ 2Ω).

For any E ⊂ Ω, define

µ∗(E) := inf
{
Σ∞

j=1µ(Ej) : Ej ∈ S,E ⊂ ∪∞
j=1Ej

}
.

Then, µ∗ is called the outer(exterior) Lebesgue measure of a set E induced by

µ on Ω.

Remark 3.6. The outer measure is to define the measure on sets outside of S beased on

the pre-measure on S.

The outer measure µ∗ of a set E always exists (may be infinitely many), since

1.
{
Σ∞

j=1µ(Aj) : Aj ∈ S,A ⊂ ∪∞j=1Aj

}
at least contains Ω;

2. Consider the real numbers in
{
Σ∞

j=1µ(Aj) : Aj ∈ S,A ⊂ ∪∞j=1Aj

}
, they have lower

bound 0. By the completeness of R, the infimum exists.

Warning: In general, one CANNOT claim that A(S) ⊃ A(Ω). This is also the key

problem of out outer measure being not able to capture all the information in the algebra

generated by Ω!

Example 3.7. An invisible set under the outer measure

Let S = {[a, b) : a, b ∈ Q, a < b} (S is indeed a semi-ring with unity), and define

the pre-measure µ([a, b)) = b − a. The outer measure µ∗ on 2R is defined by µ∗(E) =

inf{
∑∞

j=1 µ(Aj) : Aj ∈ S, E ⊆
⋃∞

j=1Aj}.

Consider the set E = Q ∩ [0, 1). We will show that µ∗(E) = 1, while µ∗({q}) = 0 for

all q ∈ E. Hence, µ∗(
⊔

q∈E{q}) = 1 > 0 =
∑

q∈E µ
∗({q}), which demonstrates that µ∗ is

not countably additive, even for disjoint sets.

Remark 3.7. This example shows that µ∗ cannot ”see” the internal structure of sets outside

the algebra A(S) (But we are still in A(Ω)!). Although E is a countable, measure-zero

set in the intuitive sense, any cover of E by rational half-open intervals must in fact cover

the entire interval [0, 1). Hence, the outer measure treats E as if it were as large as [0, 1).

A simple point of view: We know that there is quite possible to find a set E in
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A(Ω) \ A(S). For such set, we cannot find a quite precise covering of it, so we can only

use the whole unity Ω as a part of our approximation.

Remark 3.8. Why do we call it an ”outer measure”?

The name comes from its construction principle: we measure a set from the outside.

Given a subset E ⊆ Ω, we generally cannot measure E directly, because E may be too

irregular or may not belong to the algebra A(S) where the original measure µ is defined.

Instead, we approximate E by sets Aj ∈ S that cover E from the outside and take the

smallest possible total measure among all such coverings.

Formally, µ∗(E) = inf{
∑

j µ(Aj) : E ⊆
⋃

j Aj, Aj ∈ S}, which expresses the idea of

an outer approximation. The measure does not come from the intrinsic structure of E,

but from the minimal ”outer shell” built using measurable sets in S.

Philosophically, µ∗ represents the best information we can obtain about the size of E

given our limited ”vocabulary” S. It is an act of estimation under partial visibility: we

look at E through a coarse geometric lens and ask, ”How small can the total measure of

the covering be if I only use shapes I can measure?”

Thus, it is called an outer measure because it always measures from the outside,

enclosing E within measurable sets rather than dissecting it from the inside.

Proposition 3.9. 1. µ∗ always ∃, and µ∗(A) ≥ 0, ∀A ⊂ Ω.

2. We can equivalently say in the definition of µ∗ that Aj are disjoint.

3. ∀A ∈ A(S), µ(A) = µ∗(A)

Proof. On one hand, by the semi-σ-additivity, µ(A) ≤ Σ∞
j=1µ(Aj) if ∪∞j=1Aj ⊃ A.

⇒ Take inf : µ(A) ≤ µ∗(A);

On the other hand, take the trivial covering: A1 = A,

µ(A) = µ(A1) = µ(A1

⊔∞
j=1 ∅) ≥ µ∗(A),

⇒ µ(A) = µ∗(A).

4. If E1 ⊂ E2 ⊂ Ω, then µ∗(E1) ≤ µ∗(E2) (since any covering of E2 is also a covering

of E1).

5. (Semi-σ-additivity of µ∗)
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If E ⊂ ∪∞
j=1Ej, E,Ej ⊂ Ω, then µ∗(E) ≤ Σ∞

j=1µ
∗(Ej). (this CANNOT be improved

even if E = ⊔∞
j=1Ej — check our warning above!)

Proof. ∀ε > 0,

∀j, choose {Aj,k}∞k=1 ⊂ S such that Ej ⊂ ∪∞k=1Aj,k and

Σ∞
k=1µ(Aj,k) ≤ µ∗(Ej) +

ε
2j

(thanks to the infimum property).

Thus, E ⊂ ∪∞
j=1Ej ⊂ ∪∞j=1 ∪∞k=1 Aj,k.

Thus, by the definition of µ∗ and semi-σ-additivity of µ,

µ∗(E) ≤ Σ∞
j=1Σ

∞
k=1µ(Aj,k) ≤ Σ∞

j=1

(
µ∗(Ej) +

ε
2j

)
= Σ∞

j=1µ
∗(Ej) + ε.

Let ε→ 0+, we get the desired result.

Example 3.8. Let’s fix a bounded cell Ω in Rd. Let S = {all cells C ⊂ Ω}.

Define µ({p}) = 0 for all p ∈ Ω. Consider E = Ω ∩Qn, E = {q1, q2, . . .}

⇒ µ∗(E) ≤ Σ∞
j=1µ

∗({qj}) = Σ∞
j=1µ({qj}) = 0⇒ µ∗(E) = 0.

µ∗(Ω \ E) ≤ µ∗(Ω) = µ(Ω)

But by semi-σ-additivity, µ(Ω) = µ∗(Ω) ≤ µ∗(E) + µ∗(Ω \ E) = µ∗(Ω \ E).

⇒ µ∗(Ω \ E) = µ(Ω), which means that the outer measure CANNOT distinguish the

counterble but sparce set Qn.

With such outer measure, one can similarly get:

DEFINITION 3.12 (Inner Lebesgue Measure). Let µ be a σ-additive measure on a

semi-ring S with unity Ω (so, S ⊂ 2Ω).

Based on the outer measure µ∗, for any E ⊂ Ω, define

µ∗(E) = µ∗(Ω)− µ∗(Ω \ E)

Then, µ∗ is called the inner(interior) Lebesgue measure of a set E induced by µ

on Ω.

Proposition 3.10. ∀E ⊂ Ω, µ∗(E) ≤ µ∗(E)

Proof. µ∗(E) = µ∗(Ω)− µ∗(Ω \ E) = µ∗(Ω)− inf
{
Σ∞

j=1µ(Ej) : Ej ∈ S,Ω \ E ⊂ ∪∞j=1Ej

}
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3.2.4 Measurable Sets

DEFINITION 3.13 (Lebesgue Measurable Set). Let S be a semi-ring with unity Ω,

and µ be a σ-additive measure on S. R(S) = A(S) — the minimum algebra containing

S, A(S) ⊂ 2Ω.

A set E ⊂ Ω is called (Lebesgue) measurable if and only if ∀ε > 0, ∃Bε ∈ A(S)

such that µ∗(E△Bε) = µ∗(E \Bε) + µ∗(Bε \ E) < ε, i.e. the set E can be approximated

by a set Bε ∈ A(S). We call such condition the approximation property (or being

measurable in the sense of Lebesgue).

Example 3.9. In this setting, let µ∗(E) = 0, then E is measurable: Choose Bε = ∅, then

µ∗(E△Bε) = µ∗(E) < ε.

THEOREM 3.11. A set E ⊂ Ω is measurable if and only if µ∗(E) = µ∗(E).

Proof. We prove being measurable in the sense of Lebesgue.

DEFINITION 3.14 (Lebesgue Measurable: Altanative Definition). Let S be a semi-ring

with unity Ω, and µ be a σ-additive measure on S.

A set E ⊂ Ω is called (Lebesgue) measurable if and only if ∀A ⊂ Ω, µ∗(E) =

µ∗(E
⋂
A) + µ∗(E \ A). Such condition is called to be satisfying the Carathéodory

criterion (or being measurable in the sense of Carathéodory).

THEOREM 3.12. The two definitions above are equivalent.

Proof. Let S be a semi-ring with unity Ω, let µ0 be a σ-additive premeasure on S (we

emphasizes that this measure is the pre-measure), and let µ∗ be the outer measure obtained

from S by the usual covering construction.

M :=
{
E ⊂ Ω : ∀X ⊂ Ω, µ∗(X) = µ∗(X ∩ E) + µ∗(X \ E)

}
is the Carathéodory

σ-algebra.

Auxiliary facts:

(1) For all X,E,B ⊂ Ω, we have∣∣µ∗(X ∩ E)− µ∗(X ∩B)
∣∣ ≤ µ∗(E△B),

∣∣µ∗(X \ E)− µ∗(X \B)
∣∣ ≤ µ∗(E△B),
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which follows from monotonicity and subadditivity of µ∗ (e.g. X ∩ E ⊂ (X ∩ B) ∪

(E△B)).

(2) A(S) ⊂M:

First check S ⊂M by the additivity of µ0 on S and the definition of µ∗; sinceM is a

σ-algebra, it contains the algebra A(S).

(Approximation ⇒ Carathéodory).Assume E ⊂ Ω satisfies: for every ε > 0 there is

Bε ∈ A(S) with µ∗(E△Bε) < ε.

Fix X ⊂ Ω. Because Bε ∈ A(S) ⊂M, µ∗(X) ≥ µ∗(X ∩Bε) + µ∗(X \Bε).

Applying the first auxiliary fact with B = Bε gives µ
∗(X) ≥ µ∗(X ∩ E) + µ∗(X \

E)− 2µ∗(E△Bε).

Letting ε ↓ 0 yields µ∗(X) ≥ µ∗(X ∩ E) + µ∗(X \ E). The reverse inequality is the

subadditivity of µ∗, hence equality holds for all X, i.e. E ∈M.

(Carathéodory ⇒ Approximation).Assume E ∈M. Let ε > 0.

By the definition of µ∗ choose a cover E ⊂
⋃

k≥1 Sk with Sk ∈ S such that
∑∞

k=1 µ0(Sk) ≤

µ∗(E) + ε/3.

Write UN :=
⋃N

k=1 Sk ∈ A(S) and U :=
⋃

k≥1 Sk.

Then µ∗(U) ≤ µ∗(E) + ε/3.

Since E is Carathéodory measurable and E ⊂ U , µ∗(U) = µ∗(E) + µ∗(U \ E)

⇒ µ∗(U \ E) ≤ ε/3.

By semi-σ-additivity on the tail, choose N so large that µ∗(U \ UN) ≤ ε/3.

Hence µ∗(UN \E) ≤ µ∗(U \E) + µ∗(U \UN ) ≤ 2ε
3
, µ∗(E \UN ) ≤ µ∗(U \UN ) ≤ ε

3
,

and therefore µ∗(E△UN) ≤ ε.

With Bε := UN ∈ A(S) we obtain the approximation property.

Combining the two implications proves that the two definitions above are equivalent.

Remark 3.9. Think about it: Can such definition address our problem in the last subsub-

section?

Answer: Yes, the Carathéodory criterion directly and completely addresses this prob-

lem!
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1. It provides a filter: The definition provides a precise condition to ”sieve” the ”mea-

surable” sets from the ”non-measurable” ones. A set E is declared measurable if

and only if it splits every other set A in an additive way with respect to the outer

measure: µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E)

2. It constructs the σ-algebra: The Carathéodory Extension Theorem (which is based

on this definition) proves that the collectionM of all sets E that satisfy this criterion

forms a σ-algebra.

3. It guarantees additivity: The same theorem proves that the outer measure µ∗, when

restricted to this σ-algebraM, becomes a countably additive measure.

In summary, Definition 5.46 is not just an arbitrary definition; it is the precise tool

needed to solve the extension problem. It successfully identifies the exact collection of

sets (M, the Lebesgue measurable sets) on which the outer measure µ∗ behaves as a true,

countably additive measure.

Remark 3.10. The definition of a (Lebesgue) measurable set captures the idea of approx-

imability by “nice” sets. A set E ⊂ Ω is called measurable if it can be arbitrarily well

approximated by sets Bε from the algebra A(S), in the sense that the “disagreement

region” between E and Bε, namely the symmetric difference E△Bε, has arbitrarily small

outer measure: µ∗(E△Bε) < ε for all ε > 0.

Intuitively, this means that even if E itself may be irregular or complicated, we can

always find a clean, measurable set Bε that almost coincides with E up to an arbitrarily

small “error area.” Measurable sets are precisely those whose geometry can be faithfully

captured through such approximations.

In the above example, if µ∗(E) = 0, then E is trivially measurable. Indeed, we can

take Bε = ∅, so that µ∗(E△Bε) = µ∗(E) = 0 < ε. This illustrates that every measure-zero

set is measurable: such sets are geometrically “invisible” to the outer measure, since they

can be ignored without affecting any measured quantity.

3.2.5 Lebesgue Extension of a σ-Additive Measure

Setting:
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(Ω, S, µ) — Ω - set, S - semi-ring with unity Ω, µ - σ-additive measure on S

→ directly extend to (Ω,A(S), µ), µ: the pre-measure.

→ introduce µ∗ on the whole 2Ω,

→ (Ω,M(Ω), µ), withM(Ω): collection of all measurable sets in Ω.

’measurable’: ∀A ∈M(Ω), ∀ε > 0, ∃Bε ∈ A(S) such that µ∗(A△Bε) < ε.

Remark 3.11. To better distinguish µ and µ∗, for those in the original A(S), we use µ.

Otherwise, we use the notation µ∗. Thus, ∗ emphases that the measure on the set is

defined by extanding µ.

THEOREM 3.13 (Carathéodory’s Extension Theorem). In the above setting (with

pre-measure µ on A(S)), let M(S) be the collection of all measurable sets and we set

µ(A) := µ∗(A), ∀A ∈M(S). Then,

1. M(S) is a σ-algebra.

(M(S) extends the original algebra A(S).)

2. µ∗ is σ-additive onM(S).

(M extends the original measure µ on A(S).)

Proof. First of all, we know that Ω ∈M(Ω).

Step I: prove if A ∈M(Ω), then Ω \ A ∈M(Ω).

Fix ε > 0, ∃Bε ∈ A(S) such that µ∗(A△Bε) < ε.

Consider Ω \Bε ∈ A. Then, note (Ω \ A)△(Ω \Bε) = A△Bε.

Thus, µ∗((Ω \ A)△(Ω \Bε)) < ε ⇒ Ω \ A ∈M(Ω).

Step II: prove ∀A1, A2, . . . , An ∈M(Ω), we have
⋃n

i=1Ai ∈M(Ω).

Only need to prove for n = 2 (others by induction).

A1, A2 ∈M(Ω), ∀ε > 0.∃B1, B2 ∈ A : µ∗(A1△B1) < ε, µ∗(A2△B2) < ε.

A = A1

⋃
A2, we will approximate by B = B1

⋃
B2.

Since (A1

⋃
A2)△(B1

⋃
B2) ⊂ (A1

⋃
B1)△(A2

⋃
B2),

µ∗(A△B) < µ∗(A1△B1) + µ∗(A2△B2) < 2ε

⇒ A1

⋃
A2 ∈M(Ω).

Thus, the first statement is proved.

Corollary 3.14. M(Ω) is an algebra.
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Proof. • contains Ω.

• closed under taking union: proved above.

• closed under intersection:

• closed under symmetric difference: A△B =

Step III: prove µ∗ is finitely additive onM(Ω).

So, ∀A1, A2, . . . , An ∈M(Ω), we need to show µ(A1∪A2∪· · ·∪An) = µ(A1)+µ(A2)+

· · ·+ µ(An).

Similarly, only need to show for n = 2.

Take A1, A2 ∈M(Ω), A1 ∩ A2 = ∅.

∀ε > 0, ∃B1, B2 ∈ A(S) : µ∗(A1△B1) < ε, µ∗(A2△B2) < ε.

Since B1

⋂
B2 ⊂ (A1△B1)

⋃
(A2△B2), we have µ∗

Step IV: prove µ∗ is a σ-algebra onM(Ω).

. . .

. . .

Replace by disjoint union: let A′
1 = A1, A

′
2 = A2 \ A1, A

′
3 = A3 \ (A1

⋃
A2), . . ..

Then, we have A =
⊔∞

i=1A
′
i.

We have

Step V: prove µ∗ is σ-additive onM(Ω).

WTS: ∀A1, A2, . . . , An ∈M(Ω), we have µ∗(A1 ∪ A2 ∪ · · · ∪ An) = µ∗(A1) + µ∗(A2) +

· · ·+ µ∗(An).

Conclusion: We end up with a triple (Ω,M(Ω), µ) — (set: Ω, σ-algebra: M(Ω),

σ-additive measure onM(Ω): µ).

3.2.6 Measure Space

DEFINITION 3.15 (Measure Space). Such a triple (Ω,A, µ) (A is some σ-algebra on

the set Ω) is called a measure space (spcae with measure).
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DEFINITION 3.16 (Complete Measure). A complete measure (or, more precisely,

a complete measure space) is a measure space in which every subset of every null set is

measurable (thus having measure zero).

More formally, if (Ω,A, µ) is a measure space, then it’s called complete if and only if

A ⊂ E ∈ A, µ(E) = 0, ⇒ A ∈ A (and hence µ(A) = 0).

Example 3.10. For (Ω,M(Ω), µ), we always have completeness:

µ(A) = 0, E ⊂ A⇒ 0 ≤ µ∗(E) ≤ µ∗(A) = 0⇒ E ∈M(Ω).

But this FAILS in general. For example, ∃ measure 0 non-Borel sets, which is contained

in some measure 0 Borel sets, so Lebesgue measure µ on Rn, restricted to Borel σ-algebra

is incomplete.

However, any incomplete measure space can extend its measure to attain a complete

measure space. One just need to follow the Lebesgue extension of a general measure space

(Ω,A, µ).

THEOREM 3.15. For any measure space (Ω,A, µ), the following holds:

1. ∀A1 ⊂ A2 ⊂ A3 ⊂ . . . with Ai ∈ A, µ(
⋃∞

i=1Ai) = lim
i→∞

µ(Ai).

2. If A1 ⊃ A2 ⊃ A3 ⊃ . . ., Ai ∈ A, then lim
i→∞

µ(Ai) = µ(
⋂∞

i=1Ai).

Both 1 and 2 are called the continuity of the measure.

Proof.

Question: What about ∞-valued measures?

Consider a space with measure (Ω,A, µ), where µ is a R̄-valued measure. The definition

of finite additivity and σ-additivity is repeated word-by-word:

Finite additivity:

1. µ(A) ≥ 0;

2. µ(
⋃n

j=1Aj) = Σn
j=1µ(Aj);

σ-additivity:

1. µ(A) ≥ 0;

2. µ(
⋃∞

j=1Aj) = Σ∞
j=1µ(Aj);

Then we easily deduce several similar properties.
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Proposition 3.16. 1. µ(∅) = 0.

2. If A ⊂ B, then µ(A) ≤ µ(B).

3. If A ⊂
⋃∞

j=1Aj, then µ(
⋃n

j=1Aj) ≤ Σ∞
j=1µ(Aj).

DEFINITION 3.17. A measure space with ∞-valued measure is called σ-finite if

Ω =
⊔∞

k=1Ωk,Ωk ∈ A, µ(Ωk) <∞.

Then ∀A ⊂ A, µ(A) = Σ∞
k=1µ(A

⋂
Ωk) =: Σ∞

k=1µk(A).

So, essentially, µ is obtained from {µk}∞k=1, with each µk defined on A ∩ 2Ωk .

Example 3.11. Rn =
⊔

i1,i2,...,in
[i1, i1 + 1)× [i2, i2 + 1)× . . .× [in, in + 1), i1, . . . , in ∈ Z.

Remark 3.12. For Ω =
⊔∞

k=1Ωk =
⊔∞

j=1Ω
′
j

Mesures agree:
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3.3 Lebesgue Measure in Rn

Goal: UnderstandM(Rn).

Main fact: B(Rn) ⊊M(Rn) ⊊ 2R
n
.

3.3.1 Construction of a Non-Measurable Set(!)

Proposition 3.17. 1. (Shift-invariance) If Eα := {x+ α, x ∈ E,α ∈ Rn: fixed}, then

Eα ∈ Rn ⇔ E ⊂M(R); and we also have µ(Eα = µ(E)).

It holds since it holds for cells.

2. B(Rn) ⊂M(Rn)

Proposition 3.18. (Vitali Set)

∃ a non-measurable subset A ⊂ [0, 1), namely the Vitali Set1.

Proof. On [0, 1), consider the following equivalent relation:

Proposition 3.19. ∀A ⊂ R with µ(A) > 0, A contains some B ⊂ A s.t. B /∈M(R).

Proof.

Remark 3.13. The same holds in Rn: ∀A ⊂ Rn with µ(A) > 0, A contains some B ⊂ A

s.t. B /∈M(Rn).

3.3.2 Standard and General Cantor Set

We build a sequence of sets:

E0 = [0, 1]

E1 = E0 \ I1, I1 = (1
3
, 2
3
).

E2 = E1 \ I2, I2 = I1,1
⋃
I1,2, I1,1 = (1

9
, 2
9
), I1,2 = (7

9
, 8
9
).

E3 = E2 \ I3, I3 = I2,1
⋃
I2,2
⋃
I2,3
⋃
I2,4, I2,1 = ( 1

27
, 2
27
), I2,2 = ( 4

27
, 5
27
), I2,3 = (19

27
, 20
27
),

I2,4 = (25
27
, 26
27
).

1Vitali Set is the first well-contructed, clearly-proved Lebesgue non-measurable set on R in history.
The work is done by Giuseppe Vitali in 1905.
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. . .

We get a sequence of sets {Ek}, ∀Ek is closed. ⇒ C0 :=
⋂∞

k=1Ek, C0 is closed and

bounded ⇒ C0 is compact.

DEFINITION 3.18 (Standard Cantor Set). Such set C0 is called a (standard) Cantor

set.

Figure 5: Cantor Set: first few steps of construction

Proposition 3.20. 1. C0 is compact and C0 ⊂ [0, 1];

2. C0 is nowhere dense;

3. µ(C0) = 0

Proof.

4. C0 is continual.

Proof.

DEFINITION 3.19 (Fat Cantor Set). A fat Cantor set1 is an example of a set of

points on the real line that is nowhere dense (in particular it contains no intervals), yet

has positive measure.

It is a generalization of the standard Cantor set C0, which has measure zero.

Example 3.12. Consider A be the subset of points in [0, 1] the decimal expansion of which

doesn’t contain the digit 5. Approximate A by “first n digits” sets.

For each n ∈ N letAn = {x ∈ [0, 1] : among the first n decimal digits of x no digit equals 5}.

Then A1 ⊃ A2 ⊃ · · · and A =
⋂∞

n=1An.

1It is also sometimes called Smith–Volterra–Cantor set (SVC) or ε-Cantor set.
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Each An is the disjoint union of 9n intervals of length 10−n (one for each choice of n

digits from {0, 1, 2, 3, 4, 6, 7, 8, 9}), hence m(An) = 9n · 10−n =
(

9
10

)n
.

By continuity of measure, m(A) = m
(⋂∞

n=1An

)
= lim

n→∞
m(An) = lim

n→∞

(
9
10

)n
= 0.

So A is measurable and m(A) = 0.

3.3.3 Cantor Staircase Function

DEFINITION 3.20.

Figure 6: Cantor Staircase Function

Lemma 3.21. Let f : Ω→ Ω′, S ′ ⊂ 2Ω
′
, then A(f−1 ∗ (S ′)) = f−1(A(S ′)).

Proof.

Corollary 3.22. (Preimage of Borel set is Borel.)

If f : [a, b]→ [c, d] is continuous, then f−1(E ′) is Borel, provided E ′ ⊂ [c, d] is Borel.

Proof. Follows from f−1(G) is open if G is open.

Now, consider ϕ(x) := x+K(x), ϕ : [0, 1]→ [0, 2], ϕ is strictly increasing.

3.3.4 Construction of a Non-Borel Measurable Set(!)
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Proposition 3.23. Let A ⊂ Rn be a Lebesgue mesurable set, i.e. A ∈M(Rn).

Then, ∀δ > 0, ∃ a closed Fδ and an open Gδ satisfying Fδ ⊂ A ⊂ Gδ, s.t. µ(A\Fδ) < δ

and µ(Gδ \ A) < δ.

Proof.

Corollary 3.24. ∀A ∈M(Rn), A can be decomposed as:

1. A = F
⊔
E, where F is Borel and E is measure 0;

2. A = G \ E, where G is Borel and E ⊂ G is measure 0.

Proof. 1. If µ(A) <∞:

Take F :=
⋃∞

k=1 F 1

2k
.

Then F ⊂ A and ∀k, µ(F ) ≥ µ(F 1

2k
) > µ(A)− 1

2k
.

⇒ µ(F ) ≥ µ(F ) ≥ µ(A)

⇒ µ(F ) = µ(A), µ(A \ F ) = 0.

Now, if µ(A) =∞, then we can write A =
⊔∞

k=1Ak with all µ(Ak) <∞.

Then, ∀Ak = Fk

⊔
Ek.

Just take F =
⊔∞

k=1 Fk and E =
⊔∞

k=1Ek.

2. Proof is analogous to 1.

Remark 3.14. Note that the actual F here is an at most countable union of closed sets.

And G here is an at most countable intersection of open sets.

Remark 3.15. Reminder: A(f−1(S)) = f−1(A(S)) for continuous f =⇒ f−1(E) is Borel

if E is Borel.
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3.4 Completeness and Regularity of Measures

In previous sections, we touched upon the concept of completeness and approximation.

Here we formalize these notions, which are crucial for the “good behavior” of a measure.

3.4.1 Completion of a Measure Space

We have defined a complete measure space as one where subsets of null sets are measurable.

If a space is not complete, we can always “complete” it.

THEOREM 3.25 (Completion Theorem). Let (Ω,A, µ) be a measure space. Define A

as the collection of sets E ⊂ Ω of the form E = A ∪N , where A ∈ A and N is a subset

of some M ∈ A with µ(M) = 0. Define µ(E) = µ(A). Then:

1. A is a σ-algebra.

2. µ is well-defined and is a measure on A.

3. µ extends µ, i.e., µ(A) = µ(A) for all A ∈ A.

4. (Ω,A, µ) is a complete measure space, called the completion of (Ω,A, µ).

Proof. 1. σ-algebra: Clearly ∅ ∈ A. Let E = A ∪N ∈ A with N ⊂M,µ(M) = 0. Then

Ec = (A∪N)c = Ac∩N c. Notice Ac∩M c ⊂ Ec ⊂ Ac. So Ec = (Ac∩M c)∪(Ec\(Ac∩M c)).

The second part is a subset of M , hence a null subset. The first part is in A. Thus

Ec ∈ A. Countable union is straightforward.

2. Well-definedness: Suppose A1 ∪N1 = A2 ∪N2, with Ni ⊂Mi, µ(Mi) = 0. We need

to show µ(A1) = µ(A2). A1 ⊂ A2 ∪N2 ⊂ A2 ∪M2 =⇒ µ(A1) ≤ µ(A2) + µ(M2) = µ(A2).

Symmetrically, µ(A2) ≤ µ(A1). Thus µ is independent of representation.

3. & 4. Follow directly from definitions. Completeness holds because if F ⊂ E ∈ A

and µ(E) = 0, then E = A ∪N where µ(A) = 0. F is a subset of a null set, hence F ∈ A

by construction.
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3.4.2 Regularity of Measures

Regularity connects measure theory with topology. We essentially ask: can measurable

sets be approximated by open or compact sets?

DEFINITION 3.21 (Outer Regular Measure). Let X be a metric space (or topological

space) and µ a measure on the Borel σ-algebra B(X).

µ is outer regular on E if µ(E) = inf{µ(U) : E ⊂ U,U is open}.

DEFINITION 3.22 (Inner Regular Measure). Let X be a metric space (or topological

space) and µ a measure on the Borel σ-algebra B(X).

µ is inner regular on E if µ(E) = sup{µ(K) : K ⊂ E,K is compact}.

DEFINITION 3.23 (Regular Measure). Let X be a metric space (or topological space)

and µ a measure on the Borel σ-algebra B(X).

µ is regular if it is both outer and inner regular for all sets in B(X).

THEOREM 3.26 (Regularity of Lebesgue Measure). The Lebesgue measure µ on Rn is

regular. Specifically, for any Lebesgue measurable set E:

1. (Outer Regularity) µ(E) = inf{µ(U) : E ⊂ U,U open}.

2. (Inner Regularity) µ(E) = sup{µ(K) : K ⊂ E,K compact}.

Proof. 1. Outer Regularity: This follows directly from the definition of the outer

measure µ∗ (covering by cells) and the fact that cells can be slightly expanded to be open.

For ϵ > 0, cover E by {Ij} such that
∑
|Ij| < µ(E) + ϵ/2. Expand each Ij to an open Uj

such that µ(Uj) < µ(Ij) + ϵ/2j+1. Then U = ∪Uj is open and satisfies the condition.

2. Inner Regularity: First, assume E is bounded. By Prop 5.86, for ϵ > 0, there

exists a closed set F ⊂ E such that µ(E \ F ) < ϵ. Since E is bounded, F is bounded and

closed, hence compact (Heine-Borel). Thus µ(F ) > µ(E)− ϵ.

If E is unbounded, define Ek = E ∩Bk(0) (intersection with ball of radius k). Then

Ek is bounded and µ(Ek)→ µ(E). For each Ek, we can find compact Kk ⊂ Ek close in

measure. By choosing k large enough and then Kk, we obtain the result.
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3.5 Dynkin Classes

In the extension of measures (Carathéodory’s Theorem), we constructed a measure on a

σ-algebra generated by a semi-ring. A natural question arises: Is this extension unique?

To answer this, we introduce the concept of Dynkin classes (also known as λ-systems) and

π-systems. This is a powerful tool often referred to as the π-λ Theorem.

3.5.1 π-systems and λ-systems

DEFINITION 3.24 (π-system). A collection of sets P ⊂ 2Ω is called a π-system if it

is closed under finite intersection:

A,B ∈ P =⇒ A ∩B ∈ P .

Example 3.13. The collection of all semi-open cells in Rn is a π-system. The collection of

all open sets is a π-system.

DEFINITION 3.25 (λ-system / Dynkin Class). A collection of sets D ⊂ 2Ω is called a

λ-system (or a Dynkin class) if:

1. Ω ∈ D.

2. If A,B ∈ D and A ⊂ B, then B \ A ∈ D (Closed under proper difference).

3. If An ∈ D and A1 ⊂ A2 ⊂ . . . , then
⋃∞

n=1An ∈ D (Closed under monotone limits).

Remark 3.16. It is easy to check that a σ-algebra is always a λ-system and a π-system.

Conversely, if a system is both a π-system and a λ-system, it is a σ-algebra.

Proof. Let C be π-system + λ-system. 1. Ω ∈ C (λ-prop). 2. Closed under complement:

Ac = Ω \ A. Since A ⊂ Ω, Ac ∈ C (λ-prop). 3. Closed under union: A ∪B = (Ac ∩Bc)c.

Since closed under complement and intersection (π-prop), it is closed under finite union.

4. Closed under countable union: Let An ∈ C. Let Bn =
⋃n

k=1Ak ∈ C. Bn ⊂ Bn+1. By

λ-prop (3),
⋃
Bn =

⋃
An ∈ C.
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3.5.2 π-λ Theorem

THEOREM 3.27 (π-λ Theorem, Dynkin). If P is a π-system and D is a λ-system such

that P ⊂ D, then

σ(P) ⊂ D,

where σ(P) is the smallest σ-algebra generated by P.

Proof. Let D(P) be the smallest λ-system containing P (intersection of all such λ-systems).

Clearly D(P) ⊂ D. It suffices to show that D(P) is a π-system. (Because if so, by the

Remark above, D(P) is a σ-algebra containing P , hence σ(P) ⊂ D(P) ⊂ D).

Step 1: Let A ∈ D(P). Define DA = {B ∈ D(P) : A ∩B ∈ D(P)}. We show DA is a

λ-system.

• Ω ∩ A = A ∈ D(P) =⇒ Ω ∈ DA.

• Let B1 ⊂ B2 in DA. Then A∩(B2\B1) = (A∩B2)\(A∩B1). Since A∩B1 ⊂ A∩B2

are in D(P) and D(P) is a λ-system, the difference is in D(P). So B2 \B1 ∈ DA.

• Let Bn ↑ B in DA. A ∩ B =
⋃
(A ∩ Bn). By monotone limit property of D(P),

A ∩B ∈ D(P).

Step 2: Let A ∈ P . Since P is a π-system, for any B ∈ P , A ∩B ∈ P ⊂ D(P). Thus

P ⊂ DA. Since DA is a λ-system, we have D(P) ⊂ DA. This implies: ∀A ∈ P , ∀B ∈

D(P), A ∩B ∈ D(P).

Step 3: Now let B ∈ D(P) be arbitrary (not just in P). From Step 2, we know that

for any A ∈ P, A ∩ B ∈ D(P). This means A ∈ DB. So P ⊂ DB. Again, since DB is

a λ-system, D(P) ⊂ DB. This implies: ∀B ∈ D(P), ∀C ∈ D(P), B ∩ C ∈ D(P). Thus

D(P) is closed under intersection (a π-system).

3.5.3 Application: Uniqueness of Measure Extension

THEOREM 3.28 (Uniqueness of Measure). Let µ1 and µ2 be two measures on (Ω, σ(P)),

where P is a π-system. If:

1. µ1(A) = µ2(A) for all A ∈ P,

2. Ω =
⋃∞

n=1En with En ∈ P and µ1(En) = µ2(En) <∞ for all n (σ-finite condition),
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Then µ1 = µ2 on σ(P).

Proof. Let’s prove for the finite case (µ(Ω) < ∞) first. Let L = {E ∈ σ(P) : µ1(E) =

µ2(E)}.

• Ω ∈ L by assumption.

• If A ⊂ B are in L, µ1(B \ A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \ A). So

B \ A ∈ L.

• If An ↑ A are in L, by continuity of measure, µi(A) = limµi(An). Thus A ∈ L.

So L is a λ-system containing P. By the π-λ Theorem, σ(P) ⊂ L. The σ-finite case

follows by restricting measures to En and taking limits.

Remark 3.17. This theorem is fundamental. It tells us that the Lebesgue measure we

constructed is the unique measure on B(Rn) that assigns the volume l(I) to every cell I.
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4 Measurable Function
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4.1 What Kind of Functions are Measurable(?)

DEFINITION 4.1 (Measurable Function). Let (Ω,A, µ) be a measure space with a

complete measure. Then a function f : Ω → R is called measurable if and only if ∀

Borel set A ⊂ R, it holds f−1(A) ∈M(Ω).

Remark 4.1.

Remark 4.2.
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4.2 Properties of Measurable Functions

Proposition 4.1. 1. If f is measurable, then af + b is measurable for a, b ∈ R;

Define Ec := {x ∈ Ω : af(x) + b < c}

2. If f , g are measurable, then the set {x : f(x) < g(x)} is measurable.

Proof.

3. Combining 1 and 2, one can get:

. . .

⇒ f ± g is measurable.

4. If ϕ ∈ C(R) and f is measurable, then ϕ ◦ f is measurable.

Proof.

Remark 4.3.

5. If f, g are measurable, then f · g is measurable.

Proof.

6. If f, g are measurable and g(x) ̸= 0,∀x ∈ Ω, then f
g
is measurable.

Proof. f ÷ g = f · 1
g
with 1

g
being measurable by taking ϕ(x) = 1

x
in 4.

Remark 4.4. Conclusion: Arithmetric operations with measurable functions give measur-

able functions.
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4.3 Almost Everywhere Properties

DEFINITION 4.2 (Almost Everywhere). Let (Ω,A, µ) be a measure space with a

complete measure.

Then we say that a property of some points {x ∈ Ω} holds almost everywhere

(a.e.) if and only if the property holds that ∀x ∈ Ω \ E, where µ(E) = 0.

We say that a property of some points {x ∈ Ω} holds almost everywhere (a.e.) on

A, where A ∈M(Ω), if and only if the property holds for ∀x ∈ A \ E, where µ(E) = 0.

Example 4.1. 1. Dirichlet function: D(x) =


1, x ∈ Q,

0, x ∈ [0, 1] \Q.
One can esaily check that

2. One can consider convergence a.e.: fn(x)→ f(x) a.e.

3. One can consider funtions defined a.e.:

4. Finally,instead of actual functions, we may consider their equivalent classes:

Lemma 4.2. If f is measurable and µ(A) = 0,

then if we define: g(x) =


f(x), x ∈ A,

0, x /∈ A.
, g is still measurable.

Proof.

THEOREM 4.3. Let {fn}∞n=1 be a sequence of measurable fucntions on (Ω,A, µ) and

fn(x)
a.e.→ f(x). Then f(x) is also measurable.

Proof.

Corollary 4.4. Let {fn(x)} be a sequence of measurable functions. If fn(x) is bounded

from above ∀n for a.e. x ∈ Ω, then

1. sup
n
fn(x) is measurable;

2. lim sup
n→∞

fn(x) is measurable;

If, otherwise, fn(x) is bounded from below ∀n for a.e. x ∈ Ω, then

1. inf
n
fn(x) is measurable;

2. lim inf
n→∞

fn(x) is measurable.
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Proof. Consider g1(x) := f1(x), g2(x) := max{f1(x), f2(x)} = |f1(x)−f2(x)|+f1(x)+f2(x)
2

,

g3(x) := max{f1(x), f2(x), f3(x)} = max{g2(x), f3(x)}, . . . , which are all measurable

by properties in the last subsubsection.

Then, sup
n
fn(x)

a.e.
= lim

n→∞
gn(x) is measurable.

Recall: lim sup
n→∞

an(x) = sup{limits of convergent subsequences} = lim
k→∞

(sup
n≥k

an(x)).

Then, lim sup
n→∞

fn(x) = lim
k→∞

(sup
n≥k

fn(x)) is measurable.

Analogously, inf
n
fn(x) = − sup

n
(−fn(x)) is measurable; lim inf

n→∞
fn(x) = − lim sup

n→∞
(−fn(x))

is measurable.
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4.4 Egorov’s Theorem

THEOREM 4.5 (Egorov’s Theorem). Let (Ω,A, µ) be a space with a finite complete

measure, and {fn} is a sequence of measurable functions with fn
a.e.→ f .

Then, ∀δ > 0, ∃ a set Eδ ⊂ Ω s.t. µ(Eδ) < δ and fn
Ω\Eδ

⇒ f .

Proof. Fix δ > 0. Consider the divergence set E (µ(E) = 0 by our assumption):

E =
⋃

k≥1

Remark 4.5. Intuition here: on a set with small measure, convergence may be bad; but

on the rest part with large measure, convergence is uniform.

Remark 4.6. Ths Egorov’s Theorem may fail if µ(Ω) =∞.

Counter example 1: Take Ω = R with Lebesgue measure, fn(x) =
x
n
.

Then, fn(x)
a.e.→ 0 on the whole real line, but ∀Eδ with finite measure, fn ̸⇒ 0 on

R \ Eδ.

Counter example 2: Take Ω = R with Lebesgue measure, fn(x) = χ[n,n+1](x).

Then, fn(x)
a.e.→ 0 on the whole real line, but ∀Eδ with finite measure, fn ̸⇒ 0 on

R \ Eδ.

Remark 4.7. In Egorov’s Theorem, one CANNOT take Eδ = 0.

Counter example: Take Ω = [0, 1] with Lebesgue measure, fn(x) = xn.

Then, fn(x)
a.e.→ 0 for x ∈ [0, 1) and f(1) = 1.

Proposition 4.6. Let E ⊂ R be a closed set, f ∈ C(E). Then ∃g ∈ C(R), s.t. g|E = f |E.

Proof. Since E is closed, R \ E is open. So, we can write R \ E =
⊔∞

k=1 Ik, where

Ik = (ak, bk).

On each Ik, we define g as the linear function connecting (ak, f(ak)) and (bk, f(bk)).

Explicitly, g(x) = f(ak) +
f(bk)−f(ak)

bk−ak
(x− ak), x ∈ Ik.

If there are some intervals which contain ∞ or −∞, we just extend g as a constant

function on them.

So, such defined g is continuous on R and g|E = f |E.
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Remark 4.8. What’s good about such linear link / extension?

Linear functions not only preserves continuity, but also linear control, which may

provide us with some sort of convenience in some problems.

Remark 4.9. This also works for E ⊂ Rn, which requires a more complicated proof.
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4.5 Lusin’s Theorem

THEOREM 4.7 (Lusin’s Theorem). Let f be a Lebesgue measurable function on [a, b].

Then ∀δ > 0, ∃Eδ s.t. µ(Eδ) < δ and ∃ a continuous function g ∈ C([a, b]), s.t.

f |[a,b]\E = g|[a,b]\E.

Proof.

Remark 4.10. [a, b] can be replaced by any interval I ⊂ R.

Remark 4.11. We could say instead of f |[a,b]\E = g|[a,b]\E that f is continuous on [a, b] \E

for an open set E (as follows from the proof).

Remark 4.12. The Lusin’s Theorem also holds in Rn analogously: for f - measurable on

an open G ⊂ Rn.

Remark 4.13. We still CANNOT take E with µ(E) = 0.

Counter Example: f(x) =


1
x
, x ∈ (0, 1];

0, x = 0

THEOREM 4.8 (Inverse Lusin’s Theorem). Let f be a function on [a, b] with the Lusin

property (∀δ > 0, ∃Eδ : µ(Eδ) < δ and gδ ∈ C([a, b]) : f |[a,b]\E = g|[a,b]\E).

Then f is Lebesgue measurable.

So, f on [a, b] is Lebesgue measurable ⇔ f has the Lusin property.

Proof.

We established, in particular, that a measurable function on an interval is an a.e. limit

of continuous functions.
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4.6 Convergence in Measure

DEFINITION 4.3 (Convergence in Measure). Let fn be a sequence of measurable

functions on a measure space (Ω,A, µ) with a complete measure. We say that fn converges

to f in measure if ∀δ > 0,

lim
n→∞

µ({x ∈ Ω: |fn(x)− f(x)| ≥ δ}) = 0.

In the theory of probability, this is also called convergence in probability.

Notation: Xn
p−→ X where Xn, X are all random variables.

THEOREM 4.9. Let (Ω,A, µ) be a space with a finite complete measure. fn
a.e.→ f where

fn is measurable.

Then fn → f in measure.

Proof. fn
a.e.→ f on Ω. Fix δ > 0, then fix ε > 0.

By Egorov’s Theorem, ∃E : µ(E) < ε and fn
Ω\E
⇒ f . Then, ∃N ∈ N, ∀n > N, |fn(x)−

f(x)| < δ on Ω \ E ⇒ {}

Remark 4.14.

THEOREM 4.10 (Riesz Theorem). Let (Ω,A, µ) be a space with a finite complete

measure. fn → f in measure.

Then,∃fnk

a.e.→ f(k →∞) on Ω.

Proof. Fix k ∈ N, then µ({|fn − f | > 1
k
}) n→∞→ 0.

⇒ ∃nk : µ({|fnk
(x)− f(x)| ≥ 1

k
}) < 1

2k
.

Denote Ek := {|fnk
(x)− f(x)| ≥ 1

k
}, then µ(Ek) <

1
2k
.

Now, set E :=
⋂∞

N=1

⋃
k≥N Ek. Denote AN :=

⋃
k≥N Ek.

Then, µ(AN) ≤ Σk≥Nµ(Ek) < Σk≥N
1
2k

= 2−N .

But A1 ⊃ A2 ⊃ . . . and µ(A1) <
1
2
(in particular, µ(A1) <∞)

⇒ we can apply the continuity of µ:
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µ(E) = lim
N→∞

µ(AN) = 0.

We can apply the continuity of µ: µ(
⋂∞

N=1

⋃∞
k=N Ak) = 0

We claim then fnk
→ f a.e. ∀x ∈ Ω \ E

Indeed, µ(lim supEk) = µ(
⋂∞

N=1

⋃∞
k=N{|fnk

− f | ≥ 1
k
}) = 0.

If x ∈ Ω \ E, then ∃N : for k ≥ N , it holds |fnk
(x)− f(x)| < 1

k
in partic.

fnk
(x)→ f(x), as desired.

Example 4.2. Ω = [0, 1), now let’s build a sequence of intervals.

A1 = [0, 1),

A2 = [0, 1/2), A3 = [1/2, 1)

A4 = [0, 1/3), A5 = [1/3, 2/3), A6 = [2/3, 1),

A7 = [0, 1/4), . . .

Let fn(x) = 1An(x) :=


1, x ∈ An

0, x /∈ An

x

f1

1
x

f2

1
2 1

x

f3

1
2 1

x

f4

1
3 1

etc.

Then, for example, for x ∈ [0, 1), x will fall into infinitely many of An =⇒ fn(x) = 1

and x ∈ Am for infinitely many of m, so fm(x) = 0

Thus, ̸ ∃ limn→∞ fn(x) ∀x ∈ [0, 1).

But 1[0, 1
k
](x)

k→∞→ 0 a.e. and 1[0, 1
k
] is a subset of fn.
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5 Lebesgue Integration with a Finite Com-

plete Measure

The Riemann integral relies on a geometric partitioning of the domain, which fails

when the function exhibits rapid local oscillation (making approximation by vertical

rectangles impossible). In contrast, the Lebesgue integral adopts a statistical perspective

by partitioning the range. It aggregates the measure of sets where the function takes

specific values, thereby handling such irregularities robustly.

In what follows: (Ω,A, µ) — a space with finite complete measure.

(Ω: set, A: σ-algebra on Ω, µ: σ-additive measure on A.)

Define the extended real number set R = R∪{−∞,+∞} and we have the axiom: 0·∞ = 0.
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5.1 Simple Function

DEFINITION 5.1 (Simple Function). A function f on Ω is simple, if f(Ω) is at most

countable, i.e. f(Ω) = {cj}∞j=1.

Lemma 5.1. A simple f is measurable ⇐⇒ all the ’level sets1’ Ej = {x ∈ Ω: F (x) = cj}

are measurable.

THEOREM 5.2. f is measurable on Ω ⇐⇒ f can be expressed as a uniform convergence

of a sequence of simple measurable functions on Ω, i.e. ∃fn
Ω

⇒ f where all fn are simple

and measurable.

Proof. 1. Suppose f can be expressed as an uniformly convergence of some sequence of

simple measurable functions, then f is clearly measurable. (Recall that we have a theorem

saying that the a.e. convergence of a sequence of mesurable functions is still measurable.)

2. Suppose f is measurable on Ω

Fix n ∈ N, then R =
⊔+∞

k=−∞[k−1
2n
, k
2n
).

Let Ek
n = f−1([k−1

2n
, k
2n
)). ∀Ek

n, ∀x ∈ Ek
n, we set fn(x) =

k−1
2n

.

Then, Ω =
⊔+∞

k=−∞Ek
n, fn|Ek

n
= k−1

2n
. fn is well-defined on Ω.

Since f is measurable, all Ek
n are measurable ⇒ fn is measurable.

Clearly, |fn(x)− f(x)| ≤ 1
2n
⇒ fn

Ω

⇒ f .

Remark 5.1. Here, clearly it could be possible that f takes its value as ∞ on some

measure-zero set, which requires us to deal with the construction more carefully. For this

specific construction, we define ∀x ∈ E∞, fn(x) = f(x). Such construction has no problem

since E∞ has measure zero and still |fn(x)− f(x)| ≤ 1
2n
.

Remark 5.2. As seen from the proof, we may, in addition:

1. make fn ⇒ f where all fn are non-decreasing in n, just as in the proof;

Proof. At step n, fn approximates f using intervals of size 1/2n.

At step n+ 1, we split those intervals in half to get better precision. Because we are

taking the ”floor” (the lower bound of the interval k−1
2n

), refining the grid moves the

1We also call them canonical sets because they are the canonical objectives we analyzes here.
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approximation up or keeps it the same; it never moves it down.

2. make fn ⇒ f where all fn are non-increasing in n, by setting fn(x) =
k
2n
;

3. f ≥ 0⇒ choose fn ≥ 0, just as in the proof (since f ≥ 0, Ek
n = ∅, ∀k < 0);

4. f is bounded, then choose {fn} which are finitely valued (need a bit modifying of

the proof).

DEFINITION 5.2 (Lebesgue Integrable Simple Function). Let f be a measurable simple

function. Then we say that f is Lebesgue integrable on Ω if the series
∑∞

j=1 cjµ(Ej) is

absolutely convergent.

Here, f(Ω) = {cj}∞j=1, Ej = f−1({cj}).

If the condition is satisfied, we call
´
Ω
fdµ :=

∑∞
j=1 cjµ(Ej) the Lebesgue integration

of f over Ω.

Remark 5.3. It’s convenient to write f(x) =
∑∞

j=1 cj1Ej
.

Remark 5.4. Analogously, we can define the integrability of f on A ∈ A and
´
A
fdµ

∀A ∈ A.

(Switch here to A′ := A
⋂
A, µ′(X) := µ(X

⋂
A).)

Remark 5.5. In this definition, one can actually consider any partition Ω =
⊔

j Aj, Aj ∈

A, f |Aj
= aj ∈ R,

´
Ω
fdµ =

∑∞
j=1 ajµ(Aj).

In other words, one can easily check that our definition for Lebesgue integrable simple

functions is well-defined in the sense that we only need to make sure on every Ej f only

takes one constant value cj without requring all cj here to be precisely distinct, which is

presented in the next lemma.

So, thanks to the well-defineness of our definition for Lebesgue integration for simple

functions, we can simply always choose {Ej} as our partition for convenience, which is

the ’maximum’ partition.

Lemma 5.3. Let A =
⋃

k Bk, where Bi ∩ Bj = ∅ when i ̸= j, and assume that the

function f takes a constant value bk on each set Bk (We don’t require them to be all

distinct!). Then
´
A
fdµ =

∑
k bkµ(Bk), and f is Lebesgue integrable on A if and only if

the series
∑

k bkµ(Bk) is absolutely convergent.

cbna 75 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Real Analysis 5 Lebesgue Integration with a Finite Complete Measure

Proof. It is easy to see that each canonical set Ej = {x ∈ A : f(x) = cj} is the union of

those sets Bk satisfying bk = cj.

Therefore,
∑

j cjµ(Ej) =
∑

j cj
∑

k:bk=cj
µ(Bk) =

∑
k bkµ(Bk).

Since the measure is non-negative, we have
∑

j |cj|µ(Ej) =
∑

j |cj|
∑

k:bk=cj
µ(Bk) =∑

k |bk|µ(Bk).

That is, the series
∑
cjµ(Ej) and

∑
bkµ(Bk) either both converge absolutely or both

diverge. The lemma is proved.

Proposition 5.4. 1. Linearity: f, g: simple, Lebesgue integrable ⇒ αf + βg: also

Lebesgue integrable ∀α, β ∈ R and
´
A
(αf + βg)dµ = α

´
A
fdµ+ β

´
A
gdµ.

Proof. f(A) = {cj}∞j=1, g(A) = {dj}∞j=1. Ej := f−1(cj), Gj := g−1(dj).

⇒ αf + βg|Ej
⋂

Gk
= αcj + βdk (Note that {Ej

⋂
Gk}j,k itself makes a partition of

the whole space Ω.)

⇒ we shall consider, for the integrability, the series∑
j,k(αcj + βdj)µ(Ej

⋂
Gk)

= {linearity of series} = α
∑

j,k cjµ(Ej

⋂
Gk) + β

∑
j,k µ(Ej

⋂
Gk) = {σ-additivity}

= α
∑

j cjµ(Ej) + β
∑

k dkµ(Gk) where the last two series are absolutely convergent.

Thus, the original series is absolutely convergent.

Also, we have
´
A
(αf + βg)dµ = α

´
A
fdµ+ β

´
A
gdµ by definition.

2. If f is a bounded simple function: |f | ≤ C for some C ∈ R+ =⇒ f is Lebesgue

integrable and |
´
A
fdµ| ≤ Cµ(A).

Proof.
∑
|cjµ(Ej)| ≤ C

∑
µ(Ej) = Cµ(A)

=⇒
∑
cjµ(Ej) is absolutely convergent.
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5.2 Lebesgue Integral with a Finite Complete Mea-

sure

The Lebesgue integral is less concerned with the function’s behavior at individual points;

rather, it focuses on the measure of the sets where the function assumes specific values.

DEFINITION 5.3 (Lebesgue Integrable Function). Let f be a general measurable

function on (Ω,A, µ).

Then f is called Lebesgue integrable on A ⊂ A if ∃ a sequence of simple, measurable,

Lebesgue integrable (on A) functions {fn} s.t. fn
A

⇒ f .

Notation: We write f ∈ L1(A) if f is Lebesgue integrable on A.1

Further,
´
A
fdµ := lim

n→∞

´
A
fndµ in the case of integrability is the Lebesgue integra-

tion of f on A.

Proposition 5.5. 1. The limit lim
n→∞

´
A
fndµ always exists, if f is Lebesgue integrable

and fn
A

⇒ f ;

Proof. fn
A

⇒ f =⇒ ∀ε > 0, ∃N ∈ N; ∀m,n > N, |fn − fm| < ε on A.

=⇒ |
´
A
fndµ−

´
A
fmdµ| = {linearity of Lebesgue integration of Lebesgue integrable

simple function} = |
´
A
(fn − fm)dµ| ≤ εµ(A). (Thanks to the fact that µ(A) <

∞.)

2. The value lim
n→∞

´
A
fndµ doesn’t depend on the sequence {fn};

Proof. Assume, to the contrary, that L := limn→∞
´
A
fn dµ and L∗ := limn→∞

´
A
f ∗
n dµ

but L ̸= L∗.

Construct a new sequence {gn} by interleaving the two sequences:

g2n−1 := fn, g2n := f ∗
n, n = 1, 2, . . .

Since fn
A

⇒ f and f ∗
n

A

⇒ f , the interleaved sequence gn also satisfies gn
A

⇒ f (uniform

convergence on A is preserved under interleaving). Hence the limit limn→∞
´
A
gn dµ

exists.

1Here, L1 means L1-space. In general, for 1 ≤ p ≤ ∞, Lp-space is defined as the space of Lebesgue
measurable functions for which the p-th power of the absolute value is Lebesgue integrable.
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However, the subsequence of odd indices of {
´
A
gn dµ} is exactly {

´
A
fn dµ} and

therefore has limit L, while the subsequence of even indices is {
´
A
f ∗
n dµ} and has

limit L∗. This contradicts L ̸= L∗. Therefore L = L∗, and the limit is independent

of the chosen approximating sequence.

3. For simple f , the definition is equivalent the previous definition of ’Lebesgue inte-

grable’ for simple functios.

We now grab the theorem below without proving it.

THEOREM 5.6 (Cauthy Theorem on Permutations). Let
∑

n an be an absolutly con-

vergent number series.

Then ∀ permutation δ : N↔ N,
∑

n aδ(n) is also an absolutely convergent series which

converges to the same sum value.

You may be more familiar with its appearance as the Riemann Rearrangement Theorom:

”If
∑∞

n=1 an converges absolutely, then every rearrangement of
∑∞

n=1 an converges, and

they all converge to the same sum.”

Corollary 5.7. Let {a1n}∞n=1 absolutely converge to b1, {a2n}∞n=1 absolutely converge to

b2, . . .. If
∑∞

i bi absolutely converges to b ∈ R, then
∑

i,j aij absolutely converges to b.

Proposition 5.8. 1. Let f be a Lebesgue integrable simple function: f(x) =
∑∞

j=1 cj1Ej
,

then its integration over A equals
∑

j cjµ(Ej).

In particular, if f = C = constant, then
´
A
fdµ = Cµ(A);

Also,
´
A
1Edµ = µ(E), ∀E ⊂ A.

2. Linearity: f, g ∈ L1(A) ⇒ αf + βg ∈ L1(A), ∀α, β ∈ R and
´
A
(αf + βg)dµ =

α
´
A
fdµ+ β

´
A
gdµ.

Proof. ∃fn
A

⇒ f, gn
A

⇒ g where ∀fn, gn ∈ L1(A) =⇒ αfn + βgn
A

⇒ αf + βg, and by

linearity of Lebesgue integrability of simple functions we get ∀αfn + βgn ∈ L1(A),

where ∀αfn + βgn is clearly still simple, =⇒ αf + βg ∈ L1(A),
´
A
(αfn + βgn)dµ

exists and equals α
´
A
fndµ+ β

´
A
gndµ by linearity of series. Taking limit n→∞,

we obtain
´
A
(αf + βg)dµ = α

´
A
fdµ+ β

´
A
gdµ.

3. If µ(A) = 0 =⇒ ∀f ∈ L1(A) and
´
A
fdµ = 0.
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Proof. ∀f : Simply use the standard1 fn
A

⇒ f . It’s trivial that ∀fn ∈ L1(A) =⇒

f ∈ L1(A). Since µ(A) = 0, we have µ(E) = 0, ∀E ⊂ A =⇒ by definition,
´
A
fndµ = 0 =⇒

´
A
fdµ = 0.

4. If f = 0 a.e. on A, then f ∈ L1(A) and
´
A
fdµ = 0.

As a corollary, if f, g are measurable on A and f = g a.e. on A, then f, g are

Lebesgue integrable or not Lebesgue integrable simultaneously, and if they are Lebesgue

integrable,
´
A
fdµ =

´
A
gdµ.

(So, ’Lebesgue integrable’ ignores measure-zero sets.)

Proof. Let f = 0 a.e. on A. Choose the ’standard’ fn
A

⇒ f . By construction, ∀fn,

which is a simple function, fn = 0 a.e. on A.

=⇒ fn ∈ L1(A) by definition and
´
A
fndµ = 0 =⇒ f ∈ L1(A) and

´
A
fdµ = 0.

If we have f, g are measurable on A and f = g a.e. on A.

=⇒ f − g = 0 a.e. on A. Consider f = (f − g)+ g and g = (g− f)+ f , which help

us check the Lebesgue integrability on both sides (If f is Lebesgue integrable, then

g = (g − f) + f is also Lebesgue integrable. Coversely, if g is Lebesgue integrable,

then f = (f − g) + g is also Lebesgue integrable.). Now the second proposition and

the conclusion above give what we need.

5. If f is bounded a.e. on A, i.e. |f | ≤ C a.e. on A, and f is measurable, then

f ∈ L1(A) and |
´
A
fdµ| ≤ Cµ(A).

Proof. From the forth proposition, we can replace ’a.e.’ by ’everywhere’. Now,

|f | ≤ C on A. Then take the ’standard’ fn
A

⇒ f . By construction of fn, ∀fn

is bounded by C =⇒ by the proposition for simple functions, fn ∈ L1(A) and

|
´
A
fndµ| ≤ Cµ(A) =⇒ f ∈ L1(A) and passing to limit: |

´
A
fdµ| ≤ Cµ(A).

6. If f ∈ L1(A), then ∀fn ⇒ f , where all fn are simple and measurable, ∃N ∈ N :

∀fn ∈ L1(A), ∀n > N . And hence, by above,
´
A
fdµ = lim

n→∞

´
A
fndµ.

Proof. Take ε = 1 =⇒ ∃N ∈ N, we have |fn − f | < 1, ∀x ∈ A, ∀n ≥ N =⇒ fn =

1Here, ’stantard’ means being the same as the construction of such {fn} in the proof of Theorem 6.1.
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(fn− f)+ f where fn− f is bounded and measurable, and f ∈ L1(A) =⇒ fn− f ∈

L1(A) and fn ∈ L1(A).

In fact, we can also prove by contradiction, which focuses on the definition of the

Lebeegue integrability of f .

7. Lebesgue Integrability Inequality: f ≥ 0 a.e. on A, f ∈ L1(A) =⇒
´
A
fdµ ≥ 0.

As a corollary, if f ≥ g a.e. on A and f, g ∈ L1(A), then
´
A
fdµ ≥

´
A
gdµ.

Proof. We still use the ’standard’ fn ⇒ f . Then, by proposition 6, we have ∀fn ∈

L1(A). Note that fn ≥ 0 a.e. on A by construction. By definition,
´
A
fndµ ≥ 0 =⇒

passing to limit:
´
A
fdµ ≥ 0.

8. Let f, g be measurable on A, g ∈ L1(A), and |f | ≤ g a.e. on A. Then f ∈ L1(A)

and |
´
A
fdµ| ≤ |

´
A
gdµ|.

Proof. Set f+(x) = |f(x)|+f(x)
2

≥ 0 and f−(x) = |f(x)|−f(x)
2

≥ 0.

Note that |f | = f+ + f− and f = f+ − f−. Also, 0 ≤ f+,− ≤ |f |.

One can also write f+ =


f, f ≥ 0;

0, f < 0;

and f− =


0, f ≥ 0;

f, f < 0;

Lemma 5.9. f is measurable ⇐⇒ f+ and f− are both measurable.

Then, it’s sufficient to prove the statement for f ≥ 0 because if so, then for

general f , since 0 ≤ f+,− ≤ g, f+,− ∈ L1(A) =⇒ f = f+ − f− ∈ L1(A). Since
´
A
f+ ·1f≥0dµ ≤

´
A
g ·1f≥0dµ and

´
A
f− ·1f<0dµ ≤

´
A
g ·1f<0dµ, we have |

´
A
fdµ| =

|
´
A
f+ ·1f≥0− f− ·1f<0dµ| ≤

´
A
f+ ·1f≥0dµ+

´
A
f− ·1f<0dµ ≤

´
A
gdµ = |

´
A
gdµ|.

So, from now on, we assume f ≥ 0.

Choose fn ⇒ f where ∀fn is simple and measurable ∀n ≥ N for some N ∈ N, and

{fn} is non-decreasing.

Choose gn ⇒ f where ∀gn is simple and gn ∈ L1(A), ∀n ≥ N for the same N , and

{gn} is non-increasing. Thus, we have 0 ≤ fn ≤ gn but gn ∈ L1(A) =⇒ fn ∈ L1(A)

by being restricted by an upper bound and
´
A
fndµ ≤

´
A
gdµ =⇒ passing to limit,

´
A
fdµ ≤

´
A
gdµ.
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9. Absolute Lebesgue Integrability: Let f be measurable on A. Then f ∈ L1(A)⇔ |f | ∈

L1(A). And if so, |
´
A
fdµ| ≤

´
A
|f |dµ.

Proof. ”⇐”: If |f | ∈ L1(A), then take g = |f | in proposition 8, we get f ∈ L1(A).

”⇒”: Suppose f ∈ L1(A), then ∃fn ⇒ f where ∀fn is simple and Lebesgue integrable.

Then, |fn|⇒ |f | since ||fn| − |f || ≤ |fn − f |. ∀|fn| ∈ L1(A) since it corresponds to

the same series that fn has in the sense of absolute convergence. Thus, |f | ∈ L1(A)

by definition.

Finally, |
´
A
fdµ| ≤

´
A
|f |dµ, which follows from proposition 8 by taking g = |f |.

Remark 5.6. This fails for Riemann integrability. Consider the function taking its

value as 1 at all rational points and −1 at all irractional points.

10. If f ∈ L1(A) and E ⊂ A is measurable, then f ∈ L1(E).

Furthermore, if f ≥ 0, then
´
E
fdµ ≤

´
A
fdµ.

Proof. By the decomposition f = f+ − f−, it is sufficient to prove for f ≥ 0. Still

take the standard fn
A

⇒ f , then clearly we also have fn
E

⇒ f since E ⊂ A.

Clearly, fn ∈ L1(E) since its series
∑
cjµ(Ej) on E is majorated by that on A, and

´
E
fndµ ≤

´
A
fndµ (Note that fn ≥ 0.).

=⇒ f ∈ L1(E) and passing
´
E
fndµ ≤

´
A
fndµ to limit:

´
E
fdµ ≤

´
A
fndµ.

11. σ-additivity of Lebesgue integration: Let f ∈ L1(A) and A =
⊔∞

j=1Aj where ∀Aj is

measurable. Then f ∈ L1(Aj), ∀j, which follows from proposition 10, and
´
A
fdµ =∑∞

j=1

´
Aj
fdµ, where RHS converges absolutely.

Proof. Using f = f+ − f−, we only need to show for f ≥ 0.

Case 1: f(x) = 1E(x), E ⊂ A. Then the identity means µ(E) =
∑
µ(E ∩ Aj),

which is true according to the σ-additivity of µ.

Case 2: f(x) =
∑
ci1Ei

(x), ci ≥ 0, i.e. f is simple and non-negative.
´
A
fdµ =∑

i ci
´
A
1Ei

dµ =
∑

i ci
∑

j

´
Aj
1Ei

dµ =
∑

i

∑
j ci
´
Aj
1Ei

dµ =
∑

j

´
Aj
(
∑

i ci1Ei
dµ) =∑

j.
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12. Inverse of 11 holds for f ≥ 0: If
∑

j

´
Aj
fdµ <∞, A =

⊔
j Aj, then f ∈ L1(A) and

´
A
fdµ =

∑
j

´
Aj
fdµ.

Proof.

13. Chebyshev Inequality: Let f ∈ L1(A), then µ({|f | ≥ λ}) ≤ 1
λ

´
A
|f |dµ.

Proof. Let Aλ := {x ∈ A : |f(x)| ≥ λ} ⊂ A.

Then
´
A
|f |dµ ≥

´
Aλ
|f |dµ ≥

´
Aλ
λdµ = λµ(Aλ) =⇒ µ({|f | ≥ λ}) ≤ 1

λ

´
A
|f |dµ.

14. Let f ∈ L1(A) and
´
A
fdµ = 0, then f = 0 a.e.

Proof. Consider E := {f ̸= 0} = {|f | > 0} =
⋃

k∈N{|f | ≥
1
k
}. But µ({|f | ≥ 1

k
}) ≤

k
´
A
|f |dµ = 0 by Chebyshev Inequality. By σ-additivity, µ(E) = 0.

15. Absolute continuity: If f ∈ L1(A), then ∀ε > 0, ∃δ > 0 : ∀ measurable set E ⊂ A

with µ(E) < δ, it holds |
´
E
fdµ| < ε.

Proof. In view of |
´
E
fdµ| ≤

´
E
|f |dµ, we can switch to |f | =⇒ now assume f ≥ 0.

Consider An := {x ∈ A : n− 1 ≤ f(x) ≤ n}, then A =
⊔∞

n=1An. By σ-additivity,´
A
fdµ =

∑∞
n=1

´
An
fdµ, which is a convergent series because f ∈ L1(A) =⇒ For

fixed ε > 0, ∃N ∈ N,
∑∞

n=N+1

´
An
fdµ =

´⊔∞
n=N+1 An

fdµ < ε.

Now, write A = B
⊔
C, where C =

⊔∞
n=N+1An. Note that f |C ≤ N , set δ := ε

N .

Now, ∀ measurable E ⊂ A : µ(E) < δ, we have
´
A
fdµ =

´
E∩B fdµ+

´
E∩C fdµ ≤´

B
fdµ+Nµ(E ∩ C) < ε+N ε

N
= 2ε.

16. Let f ∈ L1(A), A =
⋃∞

n=1An where A1 ⊂ A2 ⊂ A3 ⊂ . . . with ∀Aj is measurable.

Then,
´
A
fdµ = lim

n→∞

´
An
fdµ.

Moreover, following this intuition, one may define
´ +∞
−∞ fdµ as lim

N→+∞

´ +N

−N
fdµ.

Proof. Repeats the proof of continuity of µ. Write A =
⊔∞

j=1A
′
j, A

′
1 = A1, A

′
2 =

A2 \ A1, etc.´
A
fdµ =

∑∞
n=1

´
A′

j
fdµ = lim

N→∞

∑N
j=1

´
A′

j
fdµ = lim

N→+∞

´⊔N
j=1 A

′
j
fdµ = lim

N→+∞

´
AN

fdµ.
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17. Inverse of 16: If f ≥ 0 and A =
⋃∞

n=1An where A1 ⊂ A2 ⊂ A3 ⊂ . . . with ∀Aj is

measurable, f ∈ L1(An), ∀n, and ∃α ∈ R, α = lim
n→+∞

´
An
fdµ, then f ∈ L1(A) and

´
A
fdµ = α.

At the end of this subsection, let’s reflect on the philosophy behind Lebesgue integral

and investigate why it extended the boundary of our understanding of ’integrable’.

From a structural point of view, the Lebesgue integral is based on reversing the

classical Riemannian paradigm. Instead of decomposing the domain into small geometric

intervals and approximating the function locally on each piece, the Lebesgue framework

reconstructs integration by analysing the measure of inverse images under the function.

The central role is played by the level sets

{x ∈ X : f(x) > a}, {x ∈ X : f(x) = c}, c ∈ R,

whose measurability guarantees that the function interacts coherently with the underlying

measure space.

A measurable function is precisely one for which these sets lie in the sigma-algebra A,

and the integral is defined through approximation by simple functions

fn =
kn∑
j=1

cj,n 1Ej,n
, Ej,n ∈ A, kn ∈ N ∪ {∞}.

This representation encodes f as a countable superposition of measurable layers, so that
´
f dµ arises as the limit of weighted measures of these layers, as opposed to limits of

Riemann sums.

This shift yields a theory stable under pointwise limits and dominated convergence:

the behaviour of the function on sets of small measure is negligible, and pathological

oscillations do not obstruct integrability, since their contribution is controlled by µ.

Consequently, the Lebesgue integral extends the Riemann integral whenever the latter

exists, i.e.
´
f dµ =

´
f dx, while admitting functions that may be nowhere continuous or

highly irregular. This measure-theoretic foundation explains why the Lebesgue integral

provides the natural analytic setting for limit theorems, Lp-spaces, and probability theory.
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5.3 Three Convergence Theorems

5.3.1 Dominated Convergence Theorem

THEOREM 5.10 (Dominated Convergence Theorem, Lebesgue). Let (Ω,A, µ) be a

measure space with a finite complete measure µ, A ∈ A, ∀{fn} is measurable on A, fn
a.e.→ f .

Assume that ∃g ∈ L1(A) : |fn| ≤ g a.e.

Then fn, f ∈ L1(A) and ∃ lim
n→+∞

´
A
fndµ =

´
A
fdµ.

Proof.

5.3.2 Monotone Convergence Theorem

THEOREM 5.11 (Monotone Convergence Theorem, Beppo Levi). Let (Ω,A, µ) be a

measure space with a finite complete measure µ. Let fn ∈ L1(A), A ∈ A and f1 ≤ f2 ≤

f3 ≤ . . . a.e.

Assume that ∃C ∈ R s.t. |
´
A
fndµ| ≤ C, ∀n.

Then, fn
a.e.→ f , f is a.e. finite, Lebesgue measurable on A and

´
A
fdµ = lim

n→∞

´
A
fndµ.

Proof.

THEOREM 5.12 (Monotone Convergence Theorem (Series Version), Beppo Levi). Let

(Ω,A, µ) be a measure space with a finite complete measure µ. Let fn ∈ L1(A), A ∈ A

and fn ≥ 0 a.e. (Thus the series
∑n

j=1 fn is non-decreasing a.e.)

Assume that
∑∞

j=1

´
A
fndµ <∞.

Then
∑n

j=1 fn
a.e.→ f ∈ L1(A) and

´
A

∑∞
j=1 fndµ =

∑∞
j=1

´
A
fndµ.

5.3.3 Fatou’s Lemma

THEOREM 5.13 (Fatou’s Lemma). Let (Ω,A, µ) be a measure space with a finite

complete measure µ, A ∈ A. Let fn ∈ L1(A), fn ≥ 0.

Assume that ∃C ∈ R s.t. |
´
A
fndµ| ≤ C,∀n, then

´
A
fdµ ≤ lim inf

n→∞

´
A
fndµ ≤ C,

where f(x) := lim inf
n→∞

fn(x).
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In particular, f is finite a.e.

Recall: lim inf
n→∞

an(x) = inf{limits of convergent subsequences} = lim
n→∞

(inf
k≥n

ak(x)).

Proof. Let gn := inf
k≥n

fk(x), then f(x) = lim
n→∞

(inf
k≥n

fk(x)) = lim
n→∞

gk(x).

Corollary 5.14. If in addition, f = lim
n→∞

fn a.e., then f is a.e. finite and
´
A
fdµ ≤ C.
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5.4 Comparison of Riemann and Lebesgue Integrals

Darboux Sum: Let f be Riemann integrable on [a, b]. For any partition P of [a, b]:

a = x0 < x1 < . . . < xn = b,∆j := [xj−1, xj]. Mj := supx∈∆j
f(x),mj := infx∈∆j

f(x).

Obviously, we have mj ≤ Mj. Then the upper and lower Darboux sums are Uf,P :=∑n
j=1Mj|∆j|, Lf,P :=

∑n
j=1mj|∆j|, and the upper and lower Darboux integrals are

Uf := lim
max |∆j |→0

Uf,P , Lf := lim
max |∆j |→0

Lf,P .

Lemma 5.15. f is Riemann integrable ⇐⇒ lim
max |∆j |→0

Uf,P = lim
max |∆j |→0

Lf,P .

And if f is Riemann integrable,
´ b
a
fdx = lim

max |∆j |→0
Uf,P = lim

max |∆j |→0
Lf,P .

THEOREM 5.16. If f is Riemann integrable on [a, b], then f ∈ L1([a, b]) and both

integrals are equal.

Proof. Let I be the integral of f on [a, b] in the sense of Riemann.

Darboux sums: Uf,P :=
∑n

j=1Mj|∆j|, Lf,P :=
∑n

j=1mj|∆j|.

gn :=


mi, x ∈ (xi−1, xi) for some i,

0, otherwise,

hn :=


Mi, x ∈ (xi−1, xi) for some i,

0, otherwise,

Now, we just consider the special splittings: we increase the density of the partition

by setting that on step n, there are 2n segments. If we keep the partition points in step

n− 1 and continue to step n, then gn is non-decreasing a.e. and hn is non-increasing a.e.

Note that gn, hn are a.e. simple, finite-valued functions =⇒ gn, hn ∈ L1([a, b]).
´
[a,b]

gndµ =
∑
mi|∆i| = Lf,Pn ,

´
[a,b]

hndµ =
∑
Mi|∆i| = Uf,Pn .

max {|
´
[a,b]

gndµ|, |
´
[a,b]

hndµ|} ≤ C = sup[a,b] |f | · (b − a) =⇒ can apply Levi’s

Theorem and one gets gn
a.e.→ g, hn

a.e.→ h, where g, h are measurable and g ≤ f ≤ h.

And
´
[a,b]

gdµ = lim
n→∞

gndµ = lim
n→∞

Lf,Pn = I,
´
[a,b]

hdµ = lim
n→∞

hndµ = lim
n→∞

Uf,Pn = I. So,
´
[a,b]

h− gdµ = 0 but h− g ≥ 0 =⇒ h− g = 0 a.e. =⇒ h = g a.e. =⇒ f = g = h a.e.

=⇒ f is measurable and f ∈ L1(A) and
´
[a,b]

fdµ =
´
[a,b]

hdµ =
´
[a,b]

gdµ = I.

So, Lebesgue integral is more general than Riemann integral.

Remark 5.7. The converse is wrong. For example, the Dirichlet function D(x) = 1Q(x) is

not Riemann integrable (upper sum: b − a but lower sum: 0) but Lebesgue integrable
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(The rational numbers are countable, so their Lebesgue measure is 0).

THEOREM 5.17 (Lebesgue Criterion). A function f on [a, b] is Riemann integrable

⇐⇒ f is bounded and continuous a.e. (The set of discontinuous points has measure

zero.)

Proof. 1. necessity: Let f ∈ R[a, b] which is the collection of all Riemann integrable

functions. Then f is bounded.

Set wi =Mi −mi = supxi,yi∈∆i
|f(xi)− f(yi)|, which is called the oscilation of f on

∆i. Then, ∀ε > 0, ∃δ > 0 : ∀ partition with maxi |∆i| ≤ δ we have
∑n

i=1wi · |∆i| < ε.

Take ∀k ∈ N s.t. there exists a partition with
∑n

i=1wi · |∆i| < 1
4k
. Let Ak := {

all ∆i here with its corresponding wi ≥ 1
2k
}, then µ(Ak) =

∑
i s.t. wi≥ 1

2k
|∆i| < 1

2k
.

Indeed, if otherwise µ(Ak) ≥ 1
2k
, then

∑n
i=1wi · |∆i| ≥

∑
i s.t. wi≥ 1

2k
wi · |∆i| ≥

1
2k

∑
i s.t. wi≥ 1

2k
|∆i| = 1

2k
µ(Ak) ≥ 1

4k
, which leads to a contradiction. So, µ(Ak) <

1
2k
.

Now, set A := ∩N≥1 ∪k>N Ak and B := [a, b] \ A. Let’s prove that µ(A) = 0 and A

actually contains all discontinuous points. µ(∪k>NAk) ≤
∑

k>N µ(Ak) <
∑

k>N
1
2k

=

1
2N

. Note that µ(∪k>NAk) is non-increasing in N and 1
2N
→ 0(N → ∞), we get

µ(A) = lim
N→∞

µ(∪k>NAk) = 0.

It remains to prove that f is continuous at ∀x ∈ B. B = ∪N≥1 ∩k>N [a, b] \ Ak, but

note that [a, b] \ Ak = ∪{ open intervals on each of which }

2. sufficiency: Now f is bounded: |f | ≤ C on [a, b] and E := discontinous set, µ(E) = 0.

We will prove that f ∈ R[a, b].

Take ∀ε > 0, then ∃G : open, G ⊃ E, µ(G) < ε. Let K := [a, b] \ G, closed and

bounded =⇒ K is compact. And f is continuous at ∀x ∈ K =⇒ ∀x ∈ K,∃Ux :

open interval containing x s.t. wx := supy,z∈Ux
|f(y)− f(z)| < ε.

{Ux} is an open covering of K =⇒ ∃U1 = UX1 , . . . , Um = Uxm : a finite subcover.

Here, we always choose the subcovering satisfying Ui ̸⊂ Uj∀i ≠ j. In fact, if we have

a finite subcovering, one can always choose the ’smallest’ subcovering of the finite

covering by eliminating those covering sets being contains in some other covering

sets in the same covering. (We will always choose such ’smallest’ finite subcovering

by default.)
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Set δ ∈ (0, ε
2m

). Now take ∀ spartition of [a, b] with maxj |∆j| < δ.∑n
j=1wj · |∆j|

=
∑

∆j⊂Gwj · |∆j|+
∑

∆j⊂Uifor some iwj · |∆j|+
∑

∆j∩∂Uifor some iwj · |∆j|

< 2C ·
∑

∆j∈G |∆j|+ ε ·
∑

∆j⊂Ui
|∆j|+ 2m · 2C · δ

< 2C · µ(G) + ε · (b− a) + 2C · ε

< 2C · ε+ ε · (b− a) + 2C · ε

= (4C + b− a) · ε

=⇒ f ∈ R[a, b].

Example 5.1 (Thomae’s Function). Thomae’s Function ζ(x) :=


1
n
, x = m

n
, (m,n) = 1;

0, x ̸∈ Q;

ζ(x) is continuous at ∀x ̸∈ Q: ∀ε > 0, there are only a finite number of rational

numbers m
n
where 1

n
≥ ϵ (because n would have to be small).Since there are only a finite

number of these ”tall spikes,” we can pick a neighborhood around our irrational number x0

that is small enough to avoid all of them. Therefore, for all x in that neighborhood, ζ(x)

is either 0 (if irrational) or very small (if rational with large n). Thus, it is continuous.

Thus, ζ(x) ∈ R[0, 1] follows from Lebesgue Criterion.
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5.5 Direct Product of Measures

Let {(Ωi,Ai, µi)}ni=1 be a system of spaces with finite complete measure.

Now, we may consider:

1. Ω := Ω1 × Ω2 × . . .Ωn;

2. S := A1 ×A2 × . . .An = {A1 × A2 × . . .× An, ∀Ai ∈ Ai} is s system of subsets in

2Ω;

3. µ := µ1 ⊗ µ2 ⊗ . . .⊗ µn, µ(A1 ×A2 × . . .×An) = µ1(A1)× µ(A2)× . . .× µn(An);

Fact: S is still a semi-ring.

Proposition 5.18. µ is still a σ-additive measure on S.

Proof. We prove for the case n = 2 and by induction we get all cases.

We need to prove: if C = A× B
⊔∞

j=1Cj, Cj = Aj × Bj with A,Aj ∈ A, B,Bj ∈ A2,

then µ(C) =
∑∞

j=1 µ(Cj).

fj(x) := µ2(Bn) · 1Aj
(x) =


0, x ∈ Aj;

µ2(Bj), x ̸∈ Aj;

Then, note that ∀x ∈ A,
∑∞

j=1 fj(x) = µ2(B) =⇒
∑∞

j=1 fj is integrable over A and

we apply Monotone Convergence Theorem (Series Version), Beppo Levi.

µ1(A) · µ2(B) =
´
A
µ2(B)dµ1 =

´
A

∑∞
j=1 fj(x)dµ1 = { Levi } =

∑∞
j=1 fj(x)dµ1 =∑∞

j=1 µ2(Bj) · µ1(Aj)

This exactly means µ(C) =
∑∞

j=1 µ(Cj).

DEFINITION 5.4.

Fact:

Remark 5.8.
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5.6 Fubini Theorem

THEOREM 5.19 (Baby Fubini Theorem). Let µ = µ1 ⊗ µ2 and we define (Ω,A, µ) like

above.

Let A ∈ A,∀x ∈ Ω1, define the respective section Sx : {y ∈ Ω2 : (x, y)inA}. Then

1. For a.e. x ∈ Ω1, it holds Sx ∈ A2;

2. The function ϕ(x) := µ2(Sx) is measurable on Ω1;

3. µ(A) =
´
Ω1
ϕ(x)dx.

Proof.

Lemma 5.20. Let (Ω,A, µ) be the Lebesgue extension of (Ω, S, µ). Let A ∈ A.

Then ∃B ⊃ A, µ(B \ A) = 0, with the form B = ∩∞
n=1Bn, B1 ∪ B2 ∪ . . . , ∀Bn =

∪∞k=1Bnk
, Bnk

∈ R(S), Bn1 ⊂ Bn2 ⊂ . . ..

Proof.

Case 1: A = A1 × A2, then obviously µ(A) = µ(A1) · µ(A2) and ϕ(x) = µ(A2) with

Sx = A2.

Case 2: A ∈ R(S) =
⊔n

j=1Cj, Cj = Xj × Yj. This case can be deduced to Case 1 if

we divide the region into disjoint union of “rectangles” wiht the form A1 × A2.

Case 3: C =
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6 Lebesgue Integration with σ-additive Mea-

sure & of ∞-valued Function

In what follows, let (Ω,A, µ) be a measure space with a complete, σ-additive measure

(possibly, µ(Ω) = +∞).

Here, σ-additivity means: ∃Bk ∈ A : Ω = ⊔∞k=1Bk, µ(Bk) < +∞.

cbna 91 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Real Analysis 6 Lebesgue Integration with σ-additive Measure & of ∞-valued Function

6.1 Lebesgue Integration with σ-additive Measure

DEFINITION 6.1 (Lebesgue Integrable Function). Let f be measurable on Ω, f ≥ 0

and f ∈ L1(Bk). Then f is Lebesgue integrable on Ω (Notation: f ∈ L1(Ω)), if∑∞
k=1

´
Bk
fdµ < +∞. The Lebesgue integration of f on Ω is

´
Ω
fdµ :=

´∞
k=1

´
Bk
fdµ.

Note that

A = A ∩ Ω = A ∩

(
∞⊔
k=1

Bk

)
=

∞⊔
k=1

(A ∩Bk), ∀A ∈ A.

Now, fix f , then ∀A ∈ A, the function υk(A) :=
´
A∩Bk

fdµ defines a σ-additive

measure υ (by the σ-additivity of Lebesgue integration). (Here, υk = υf,k.)

v(A) :=
∞∑
k=1

vk(A) =
∞∑
k=1

ˆ
A∩Bk

fdµ.

⇒ the above construction of
´
Ω
fdµ is exactly the construction of the σ-additive

measure υ.

Now, we can use the propositions of σ-additivity measures. υ(A) :=
∑∞

k=1 υk(A).

∞∑
k=1

ˆ
A∩Bk

fdµ =

ˆ
⊔∞

k=1(A∩Bk)

fdµ =

ˆ
A

fdµ

So, we conclude that the definition of υ is independent of the partition Ω =
⊔∞

k=1Bk.

Also, we have υ(A) < +∞ ⇐⇒ f ∈ L1(A).
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The next theorem compares improper Riemann integration and Lebsgue integration.

THEOREM 6.1. Let’s consider the improper Riemann integration
´ +∞
a

f(x)dx (pre-

suming thet f ∈ R[a, b], ∀b ≥ a).

Assume that f ≥ 0. Then the (R)
´ +∞
a

f(x)dx coverges ⇐⇒ the Lebesgue integration

(L)
´ +∞
a

f(x)dµ < +∞ and in the latter case coincide.

Proof. Since the function Φ(b) :=
´ b
a
f(x)dx is monotonic (due to the fact that f ≥ 0),

∃ lim
b→+∞

´ b
a
f(x)dx ⇐⇒ ∃ lim

N→+∞,N∈N

´ N
a
f(x)dx. But (R)

´ N
a
f(x)dx = (L)

´ N
a
fdµ
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Proposition 6.2. 1. Integration of a simple function f(x) =
∑∞

j=1 cj1Aj
exists ⇐⇒∑∞

j=1 |cj|µ(Aj) < +∞ and
´
A
fdµ =

∑∞
j=1 cjµ(Aj) (A =

⊔∞
j=1Aj).

2. Linearity: f, g ∈ L1(A) ⇒ αf + βg ∈ L1(A), ∀α, β ∈ R and
´
A
(αf + βg)dµ =

α
´
A
fdµ+ β

´
A
gdµ.

Extra Claim: If f ∈ L1(A), and g has an integration over A (finite or infinite), then

the above still holds.

Extra Claim:
´
A
f + gdµ =

´
A
fdµ +

´
A
gdµ holds if

´
A
fdµ and

´
A
gdµ are both

+∞ or both −∞.

3. µ(A) = 0 =⇒ ∀f ∈ L1(A) and
´
A
fdµ = 0.

4. If f = g a.e. =⇒
´
A
fdµ and

´
A
gdµ are decided in the same way.

In particular, if f = 0 a.e., then
´
A
fdµ =0.

5. Bounded f may ̸∈ L1(A) and ̸ ∃
´
A
fdµ, but

´
A
|f |dµ ≤ sup |f | · µ(A) still holds.

Counter Example: f(x) =


1, x ≥ 0;

−1, x < 0;

6. ∃fn ⇒ f , where all fn are simple, fails in general.
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6.2 Three Convergence Theorems

6.2.1 Monotone Convergence Theorem

THEOREM 6.3 (Monotone Convergence Theorem, Beppo Levi). Let (Ω,A, µ) be a

measure space with a complete, σ-additive measure µ. Let fn ∈ L1(A), A ∈ A and

f1 ≤ f2 ≤ f3 ≤ . . . a.e.

Assume that ∃C ∈ R s.t. |
´
A
fndµ| ≤ C, ∀n. Then, fn

a.e.→ f for some f , f is a.e.

finite, Lebesgue measurable on A and
´
A
fdµ = lim

n→∞

´
A
fndµ.

Proof.

THEOREM 6.4 (Monotone Convergence Theorem (Series Version), Beppo Levi). Let

(Ω,A, µ) be a measure space with a complete, σ-additive measure µ. Let fn ∈ L1(A), A ∈ A

and fn ≥ 0 a.e. (Thus the series
∑n

j=1 fn is non-decreasing a.e.)

Then
´
A

∑∞
j=1 fndµ =

∑∞
j=1

´
A
fndµ.

Further assume that
∑∞

j=1

´
A
fndµ <∞. Then

∑n
j=1 fn

a.e.→ f ∈ L1(A) and
´
A

∑∞
j=1 fndµ =∑∞

j=1

´
A
fndµ.

6.2.2 Fatou’s Lemma

THEOREM 6.5 (Fatou’s Lemma). Let (Ω,A, µ) be a measure space with a complete,

σ-additive measure µ, A ∈ A. Let fn ∈ L1(A), fn ≥ 0.

Assume that ∃C ∈ R s.t. |
´
A
fndµ| ≤ C,∀n, then

´
A
fdµ ≤ lim inf

n→∞

´
A
fndµ ≤ C,

where f(x) := lim inf
n→∞

fn(x).

In particular, f is finite a.e.

Proof.

6.2.3 Dominated Convergence Theorem

THEOREM 6.6 (Dominated Convergence Theorem, Lebesgue). Let (Ω,A, µ) be a

measure space with a complete, σ-additive measure µ, A ∈ A, ∀{fn} is measurable on A,
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fn
a.e.→ f .

Assume that ∃g ∈ L1(A) : |fn| ≤ g a.e., then fn, f ∈ L1(A) and ∃ lim
n→+∞

´
A
fndµ =

´
A
fdµ.

Proof. First, note that f ∈ L1(A) and fn ∈ L1(A). This follows from the properties of

integrable functions (since |fn| ≤ g implies integrability, and the limit function f is also

bounded by g a.e.).

Step 1: Lower Bound

Consider the non-negative sequence of functions g+ fn ≥ 0.Since fn → f a.e., we have

g + fn → g + f a.e.Applying Fatou’s Lemma:

ˆ
A

(g + f) dµ ≤ lim inf
n→∞

ˆ
A

(g + fn) dµ

Using the linearity of the integral:

ˆ
A

g dµ+

ˆ
A

f dµ ≤
ˆ
A

g dµ+ lim inf
n→∞

ˆ
A

fn dµ

Since g ∈ L1(A),
´
g dµ is finite, so we can subtract it from both sides:

ˆ
A

f dµ ≤ lim inf
n→∞

ˆ
A

fn dµ

Step 2: Upper Bound

Next, we consider the sequence g − fn ≥ 0.Using the same logic (”do all the same”),

we apply Fatou’s Lemma to g − fn. This yields the inequality:

ˆ
A

lim inf
n→∞

(g − fn) dµ ≤ lim inf
n→∞

ˆ
A

(g − fn) dµ

ˆ
g dµ−

ˆ
f dµ ≤

ˆ
g dµ− lim sup

n→∞

ˆ
fn dµ

−
ˆ
f dµ ≤ − lim sup

n→∞

ˆ
fn dµ
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ˆ
f dµ ≥ lim sup

n→∞

ˆ
fn dµ

ˆ
A

f dµ ≥ lim sup
n→∞

ˆ
A

fn dµ

Putting the results from Step 1 and Step 2 together, we have:

lim sup
n→∞

ˆ
A

fn dµ ≤
ˆ
A

f dµ ≤ lim inf
n→∞

ˆ
A

fn dµ

Since it is always true that lim inf ≤ lim sup, all three terms must be equal. Therefore,

the limit exists and:

lim
n→∞

ˆ
A

fn dµ =

ˆ
A

f dµ
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6.3 What kinds of ∞-valued Functions are measur-

able(?)

In what follows, let (Ω,A, µ) be a measure space with a complete, σ-additive measure

(possibly, µ(Ω) = +∞).

Here, σ-additivity means: ∃Bk ∈ A : Ω = ⊔∞k=1Bk, µ(Bk) < +∞.

Question: What about ∞-valued function?

Answer: R̄ = R ∪ {±∞} ∼= [a, b], if you apply arctanx : R̄→ [−π
2
, π
2
].

Lemma 6.7 (Open Set in R̄). Open sets in R̄ =


Open sets in R

Open sets in R ∪ Neighborhood of ±∞
“ ∪” in the definition of the second kind of open set means the result set is Borel.

DEFINITION 6.2 (Measurable Function). Let (Ω,A, µ) be a measure space with a

complete, σ-additive measure (possibly, µ(Ω) = +∞). Then a function f : Ω → R̄ is

called measurable if and only if


∀ Open set A ⊂ R̄, f−1(A) ∈M(Ω);

f−1(±∞) ∈M(Ω).

As long as it makes sense: Similarly, we still have

Proposition 6.8. 1. f ± g is measurable;

2. f · g is measurable;

3. f/g is measurable, provided g ̸= 0;

4. Let {fn}∞n=1 be a sequence of measurable fucntions on (Ω,A, µ) and fn(x)
a.e.→ f(x).

Then f(x) is also measurable;

5. Let {fn(x)} be a sequence of measurable functions. If fn(x) is bounded from above

∀n for a.e. x ∈ Ω. Then sup
n
fn(x), lim sup

n→∞
fn(x) are measurable;

6. Let {fn(x)} be a sequence of measurable functions. If fn(x) is bounded from below

∀n for a.e. x ∈ Ω. Then inf
n
fn(x), lim inf

n→∞
fn(x) are measurable;

For integration, we define:

If f(x) ∈ [a,+∞] for some a, let E := {x : f(x) = +∞}:


if µ(E) = 0,

´
A
fdµ :=

´
A\E fdµ;

if µ(E) > 0,
´
A
fdµ := +∞.
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For general f ∈ R̄, we consider f as f = f+−f− and deal with
´
A
fdµ =

´
A
f+dµ+

´
A
f−dµ

if both terms makes sense.

Lemma 6.9. For f : f(x) ∈ R̄,

f ∈ L1(A) ⇐⇒ f(x) ∈ R a.e. and f ∈ L1(A \ E±∞).

Also, we have stronger convergence theorems as follows.

THEOREM 6.10 (Strong Monotone Convergence Theorem, Beppo Levi). For {fn} :

fn(x) ∈ R̄, fn ≥ 0, measurable, non-decreasing =⇒
´
A
lim
n→∞

fndµ = lim
n→∞

´
A
fndµ.

THEOREM 6.11 (Strong Fatou’s Lemma). For {fn} : fn(x) ∈ R̄, fn ≥ 0, measurable

=⇒
´
A
lim inf
n→∞

fndµ ≤ lim
n→∞

´
A
fndµ.

One application:

THEOREM 6.12. For 0 ≤ f ≤ g, f(x), g(x) ∈ R̄, f, g measurable

=⇒ 0 ≤
´
A
fdµ ≤

´
A
gdµ.
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7 Lp Space

In what follows: (Ω,A, µ) is a space with a complete measure. More precisely, we use it

to denote the space of equivalent classes of a.e. equivalences.
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7.1 L1 Space

Recall: L1(Ω) = {f :
´
Ω
|f |dµ <∞}.

Recall: L1(Ω) is a linear space: f, g ∈ L1(A)⇒ αf + βg ∈ L1(A), ∀α, β ∈ R. Here, L1(Ω)

is equipped with the norm ∥f∥ :=
´
Ω
|f |dµ, which is indeed a norm:

1. ∥λ · f∥ = |λ| · ∥f∥;

2. ∥f + g∥ ≤ ∥f∥+ ∥g∥;

3. ∥f∥ = 0 ⇐⇒ f = 0.

So, L1(Ω) is a normed space.

Example 7.1. Ω = N, µ(A) = #A, which is the cadinality of the set A ⊂ Ω.

L1(Ω) = ℓ1(Ω) = {(a1, a2, . . .) :
∑∞

j |aj| < ∞}, which is the # is counting measure

and
´
f d# =

∑∞
n=1 f(n).

THEOREM 7.1. L1(Ω), equipped with the norm ∥ · ∥, is a Banach space.

Reminder: Let X be a metric space, {xn} be a Cauchy sequence and ∃{xnk
} satisfying

xnk

k→∞→ a =⇒ xn
n→∞→ a, since d(xn, a) ≤ d(xn, xnk

) + d(a, xnk
) < 2ε.

Proof. Let {fn} be a Cauchy sequence.

Then take increasing {Nk}∞k=1 : ∀m, l ≥ Nk, ∥fm − fl∥ < 1
2k
. In particular, we have

∥fNk+1
−fNk

∥ < 1
2k
⇐⇒

´
Ω
(fNk+1

−fNk
)dµ < 1

2k
=⇒

∑∞
k=1

´
Ω
fk+1−fkdµ <∞ =⇒ by

the series version of Levi Theorem, we get
∑
|fNk+1

−fNk
| <∞ a.e. =⇒

∑
(fNk+1

−fNk
),

which is exactly a kind of partial sum, is absolutely convergent a.e. =⇒ fNk

a.e.→ f .

Since fNk
is also a Cauchy sequence, ∀ε > 0,∃N ∈ N : ∀m,n ≥ N, ∥fNm − fNl

∥ < ε.

Now, apply Fatou’s Lemma, we have

ˆ
Ω

lim inf
l→∞

(fNm − fNl
)dµ =

ˆ
Ω

(fNm − fd)µ = ∥fNm − f∥

≤ lim inf
l→∞

ˆ
Ω

(fNm − fNl
)dµ = lim inf

l→∞
∥fNm − fNl

∥ < lim inf
l→∞

ε = ε

Thus, the limit f ∈ L1(Ω), since fNm − f ∈ L1(Ω), fNm ∈ L1(Ω). And we have

∀m ≥ N, ∥fNm − f∥ ≤ ε. By definition, fNm

L1

→ f . So, {fn} contains a subsequence
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convergent to f =⇒ fn
L1

→ f .

Remark 7.1. If we restrict to µ(Ω) <∞, then we have the following relationship between

3 types of convergence:

convergence a.e. =⇒ convergence in measure µ

convergence L1 =⇒ convergence in measure µ

The second implication is true even for µ(Ω) =∞:

By Chebyshev inequality, µ({|fn − f | ≥ δ}) ≤ 1
δ

´
Ω
|fn − f |dµ can be bounded from

above.

Remark 7.2. In probability,

1. convergence a.e. ⇐⇒ convergence with probability 1;

2. convergence in measure µ ⇐⇒ convergence in probability;

3. convergence in L1 ⇐⇒ convergence in mean.
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7.2 Lp Space with 1 < p <∞

Assume 1 < p <∞.

DEFINITION 7.1 (Lp-function). A measurable function f on (Ω,A, µ) is called an

Lp-function if
´
Ω
|f |pdµ <∞.

DEFINITION 7.2 (Lp Space). Lp := { all Lp functions / equivalent classes}.

DEFINITION 7.3 (Lp Norm). For f ∈ Lp, ∥f∥p := (
´
Ω
|f |pdµ)

1
p .

It is indeed a norm:

1. ∥λ · f∥p = |λ| · ∥f∥p;

2. ∥f + g∥p ≤ ∥f∥p + ∥g∥p: see Minkovski inequality below;

3. ∥f∥p = 0 ⇐⇒ f = 0.

DEFINITION 7.4 (ℓp Space). ℓp := {x = (xn)n∈N ⊂ R or C :
∑∞

n=1 |xn|p <∞}.

DEFINITION 7.5 (ℓp Norm). For x ∈ ℓp, ∥x∥p := (
∑∞

n=1 |xn|p)
1/p

.

Notation: ∀p > 1, the dual number of p is q : 1
p
+ 1

q
= 1. q = p

p−1
, so q > 1.

Lemma 7.2. ∀a, b ≥ 0, it holds: a
1
p · b

1
q ≤ a

p
+ b

q
.

Proof. If a · b = 0, trivial.

Assume a > 0, b > 0. Then 1
p
ln a+ 1

q
ln b ≤ ln(a

p
+ b

q
). Then it holds by the convexity

of the ln(·) function.

THEOREM 7.3 (Holder Inequality). If f ∈ Lp(Ω), g ∈ Lq(Ω), then f · g ∈ L1(Ω) and
´
Ω
|f · g|dµ ≤ ∥f∥p · ∥g∥q.

Proof. If ∥f∥p · ∥g∥q = 0, trivial.

We now normalify the inequality by letting f → f
∥f∥p and g → g

∥g∥q . And now

∥f∥p = ∥g∥q = 1. We need to prove that
´
Ω
|f · g|dµ ≤ 1.

In the above lemma, choose a = |f |p, b = |g|q, then |f | · |g| ≤ |f |p
p

+ |g|q
q
. Then

´
Ω
|f · g|dµ ≤

´
Ω

|f |p
p

+ |g|q
q
dµ = 1

p
∥f∥p + 1

q
∥g∥q = 1

p
+ 1

q
= 1.

Remark 7.3. This theorem holds even without f ∈ Lp, g ∈ Lq.
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THEOREM 7.4 (Minkovski Inequality). Let f, g ∈ Lp(Ω), p > 1. Then f + g ∈ Lp(Ω)

and ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Proof. First, consider the case: f + g ∈ Lp(Ω).

|f + g|p = |f + g|p−1 · |f + g| ≤ |f + g|p−1 · |f |+ |f + g|p−1 · |g|.

=⇒
ˆ
Ω

|f + g|pdµ ≤
ˆ
Ω

|f + g|p−1 · |f |dµ+

ˆ
Ω

|f + g|p−1 · |g|dµ

≤ { Holder Inequality }

≤ (

ˆ
Ω

|f |p)
1
p · (
ˆ
Ω

|f + g|q(p−1)dµ)
1
q + (

ˆ
Ω

|g|p)
1
p · (
ˆ
Ω

|f + g|q(p−1)dµ)
1
q ,

where q = p
p−1

.

Thus, divided by (
´
Ω
|f + g|pdµ)

1
q , we have ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Next, consider the case: without approximating ∥f + g∥p <∞.

∃A1 ⊂ A2 ⊂ . . . ,Ω = ∪∞j Aj,
´
Aj
|f + g|pdµ <∞.

Thus, ∀Aj, we have (
´
Aj
|f + g|pdµ)

1
p ≤ (

´
Aj
|f |p)

1
p + (

´
Aj
|g|p)

1
p .

Now, let j →∞, we get ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Corollary 7.5. Lp(Ω) is a linear space.

Furthermore, Lp(Ω) is a normed space.

THEOREM 7.6. Lp(Ω), equipped with the norm ∥ · ∥p, is a Banach space.

Proof. First, assume µ(Ω) <∞.

Take a Cauthy sequence {fn}. ∃{Nk}, which is increasing, s.t.

∀m, l ≥ Nk, ∥fm − fl∥p < 1
2k
.

Now,
´
Ω
|fm − fl|dµ ≤ { Holder Inequality with f = fm − fl, g = 1, }

≤ ∥fm − fl∥p · ∥1∥q = ∥fm − fl∥p · (µ(Ω))
1
q =⇒

∑
k

´
Ω
|fNk+1

− fNk
|dµ <∞

=⇒ apply Levi Theorem,
∑
|fNk+1

− fNk
| <∞ a.e. =⇒ fNk+1

a.e.→ f .

Since {fNk
} is a Cauchy sequence itself. ∀ε > 0, ∃N ∈ N : ∀m, l ≥ N , we have

∥fNm − fNl
∥p < ε.
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Now, fix m and let l→∞, by Fatou’s Theorem, ∥fNm − f∥ ≤ ε =⇒ fNm

Lp

→ f =⇒

fn
Lp

→ f .

Next, assume that µ(Ω) =∞.

Note that we only used µ(Ω) <∞ for proving ∃fNk

a.e.→ f .

∃{Aj} : Ω =
⊔∞

j=1Aj, µ(Aj) <∞ and ∀Aj, (
´
Aj
|fm−fl|pdµ)frac1p ≤ ∥fm−fl∥p since

Aj ⊂ Ω.

=⇒ {fn} is also Cauthy in ∀Lp(Aj).

By the above, ∃ a.e.convergent subsequences:

On A1 : ∃f11, f12, f13, . . . convergent a.e.

On A2 : ∃f21, f22, f23, . . . convergent a.e., which is a subsequence of the above sequence.

On A3 : ∃f31, f32, f33, . . . convergent a.e., which is a subsequence of the above sequence.

. . . . . .

Using the Cantor diagonal trick: {fnn} is a subsequence of {fn} and converges a.e. on

∀Aj.

=⇒ {fnn} converges a.e. on Ω.

Finally, apply Fatou’s Lemma just as what we’ve done in the proof of ‘L1(Ω) is a

Banach space’, we arrive with the conclusion that Lp(Ω) is a Banach space.
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7.3 Separable Lp Space

Question: When do we have Lp(Ω) being separable?

DEFINITION 7.6 (Countable Base). We say that (Ω,A, µ) has a countable base, if

∀A : µ(A) <∞,∀ε > 0, ∃Bj : µ(A∆Bj) < ε, where {Bj}∞j=1 is a countable system of sets

in A.

Example 7.2. If µ is the Lebesgue measure on Rn, one can choose {Bj} as the collection

of finite unions of rational cells.

THEOREM 7.7. Let (Ω,A, µ) be a measure space with a countable base. Then Lp(Ω)

is separable for 1 ≤ p <∞.

Proof. Let B = {On}∞n=1 be the countable base, and let A0 be the algebra generated by

B. Note that A0 is countable. Define the countable collection E as:

E =

{
m∑
j=1

qj1Bj

∣∣∣∣∣ m ∈ N, qj ∈ Q, Bj ∈ A0

}
.

We aim to show that E is dense in Lp(Ω). Let f ∈ Lp(Ω) and let ε > 0.

Step 1: Reduction to non-negative functions.

Since f = f+−f−, where f+, f− ≥ 0, it suffices to approximate non-negative functions.

By the Minkowski inequality, if we can find g1, g2 ∈ E such that ∥f+ − g1∥p < ε/2 and

∥f−−g2∥p < ε/2, then ∥f−g∥p = ∥(f+−f−)− (g1−g2)∥p ≤ ∥f+−g1∥p+∥f−−g2∥p < ε.

Thus, without loss of generality, assume f ≥ 0.

Step 2: Approximation by bounded functions (Levi Theorem).

Consider the sequence of truncated functions fn = min(f, n) · 1Sn , where Sn is a

sequence of finite measure sets increasing to Ω. Then 0 ≤ fn ↗ f pointwise. Since f ∈ Lp,

by the Monotone Convergence Theorem (Levi Theorem) or the Dominated Convergence

Theorem, we have:

lim
n→∞

∥f − fn∥p = 0.

Choose a bounded function h = fN for sufficiently large N such that ∥f − h∥p < ε/4.
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Step 3: Approximation by simple functions.

Since h is bounded and vanishes outside a set of finite measure, there exists a sim-

ple function ϕ =
∑K

k=1 ck1Ak
(with ck ∈ R, Ak ∈ A) that uniformly approximates h.

Consequently, in the Lp norm:

∥h− ϕ∥p <
ε

4
.

Step 4: Approximation of measurable sets.

The sets Ak belong to A, but we need sets from the countable algebra A0. Since A0

generates A, for each Ak, there exists a set Bk ∈ A0 such that µ(Ak∆Bk) is sufficiently

small. Specifically, we choose Bk such that

∥∥∥∥∥
K∑
k=1

ck1Ak
−

K∑
k=1

ck1Bk

∥∥∥∥∥
p

≤
K∑
k=1

|ck| ∥1Ak
− 1Bk

∥p <
ε

4
.

Let ψ =
∑K

k=1 ck1Bk
.

Step 5: Approximation by rational coefficients.

Finally, we approximate the real coefficients ck with rational numbers qk ∈ Q. Since Q

is dense in R, we can choose qk close enough to ck such that

∥ψ − g∥p =

∥∥∥∥∥
K∑
k=1

(ck − qk)1Bk

∥∥∥∥∥
p

<
ε

4
,

where g =
∑K

k=1 qk1Bk
. Note that g ∈ E.

Conclusion.

Combining all steps using the triangle inequality:

∥f − g∥p ≤ ∥f − h∥p + ∥h− ϕ∥p + ∥ϕ− ψ∥p + ∥ψ − g∥p < 4 · ε
4
= ε.

Since E is a countable set, Lp(Ω) is separable.
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8.1 Charge(Generalized Measure)

DEFINITION 8.1 (Charge). Let A ⊂ 2Ω be a σ-algebra, then a function ν : A → R

is called a charge (or generalized measure), if ∀ disjoint A1, A2, . . . ∈ A, it holds

ν(
⊔∞

j=1Aj) =
∑∞

j=1 ν(Aj).

From now on, we firstly assume that ν is finitely valued, i.e. ν(A) ̸= ±∞,∀A.

Example 8.1. For measures µ1, µ2 on A, we consider α1µ1 + α2µ2, α1, α2 ∈ R.

DEFINITION 8.2. For A ∈ A, we call ν is

1. positive on A, if ∀B ∈ A, B ⊂ A, µ(B) ≥ 0;

2. negative on A, if ∀B ∈ A, B ⊂ A, µ(B) ≤ 0;

3. zero on A, if ∀B ∈ A, B ⊂ A, µ(B) = 0.

Apparently, zero = positive + negative.

Accordingly, we call A is a positive/negative/zero set with respect to ν.

Example 8.2. If ν is positive on A, then ν|A∩A is a measure.

Proposition 8.1. ∀A ∈ A with ν(A) < 0, ∃A′ ⊂ A,A′ ∈ A, s.t. ν is negative on A′ and

ν(A′) < 0.

Proof. Notation: S(C) := sup{ν(B) : B ⊂ C}.

Now, consider S(A): If S(A) ≤ 0, then just choose A′ = A.

Assume §(A) > 0. Next, consider the case S(A) = +∞.

Then ∃B1 ⊂ A, ν(B1) > 1 =⇒ ν(A \B1) < ν(A). Let A1 := A \B1.

Now, either S(A \ B1) < +∞ or we continue and find B2 ⊂ A1 : ν(B2) > 1. Let

A2 = A1 \B2

So, finally replace A by Ak ⊂ A for some k. We can just assume that 0 < S(A) < +∞.

Remark 8.1. A charge has all the proposties of a measure that not involves non-negativity.

In particular, the continuity of union and intersection still hold and one can check

through same proof.
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THEOREM 8.2 (Hahn Decomposition). Let ν be a charge on A ⊂ 2Ω. Then ∃Ω+,Ω− :

Ω = Ω+
⊔

Ω−, s.t. ν is positive on Ω+ and negative on Ω−.

Proof. Let M := {all negative subsets of Ω}. For instance, ∅ ∈M .

Set α := infA∈M ν(A) and α ≤ 0. ∃An ∈M : ν(An)→ α.

Set Ω− :=
⋃∞

n=1An, then Ω− ∈M , since unions of positive sets are still positive while

unions of negative sets are still negative if you partition the union into a disjoint union

and apply σ-additivity.

ν(Ω−) ≤ ν(An), ∀n =⇒ ν(Ω−) ≤ lim
n→∞

ν(An) = α.

Since α is the infimum, ν(Ω−) = α.

Set Ω+ := Ω \ Ω−, we claim that ν is positive on Ω+.

By continuity, let A ⊂ Ω+ : ν(A) < 0, then by the proposition, ∃A′ ⊂ A : ν(A′) < 0

and ν is negative on A′.

Now, we have Ω−⊔A′ ∈ M and ν(Ω−⊔A′) = ν(Ω−) + ν(A′) < α, which is a

contradiction to the fact that α is the infimum.

Remark 8.2. The decomposition Ω = Ω+
⊔

Ω− is essentially unique, i.e. if Ω = Ω̃+
⊔

Ω̃−,

then Ω± differs from Ω̃± by a zero set respectively, since Ω+ \ Ω̃+ ∈ Ω+
⋂

Ω̃−.

Corollary 8.3 (Jordan Decomposition). Let ν be a charge on A. Then ∃ν+, ν− ≥ 0, i.e.

being positive on Ω, which means they are both measures in fact, s.t. ν = ν+ − ν−.

Proof. Ω = Ω+
⊔

Ω−.

∀A ∈ A, set ν+(A) := ν(A
⋂

Ω+) ≥ 0 and ν− := −ν(A
⋂
Ω−) ≥ 0.

Remark 8.3. Jordan decomposition is not unique! One can choose ν± → ν± + µ, where µ

is any measure.
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8.2 Absolutely Continuous Charge

DEFINITION 8.3 (Absolutely Continuous Charge). A charge ν on A ⊂ 2Ω is called

absolutely continuous w.r.t. a measure µ on A, if ∀E ∈ A with µ(E) = 0, it holds

ν(E) = 0.

Example 8.3. For f ∈ L1(Ω), set ν(E) :=
´
E
fdµ.

Proposition 8.4. Let λ, µ be two measure on A ⊂ 2Ω, λ ̸≡ 0 (i.e. λ(Ω) ̸= 0), λ be

absolutely continuous w.r.t. µ. Then ∃E ∈ A, s.t.

1. µ(E) > 0;

2. the charge λ− ε · µ is positive on E for some ε > 0.

Proof. ∀n ∈ N, consider λn := λ− 1
n
· µ.

Apply the Hahn Decomposition for λn: Ω = A+
n

⊔
A−

n .

Set A+ :=
⋃∞

n=1A
+
n and A− :=

⋂∞
n=1A

−
n .

Since A+
n = Ω \ A−

n , by duality: Ω = A+
⊔
A−.

A− ⊂ A−
n , ∀n, λn is negative on A−

n =⇒ λn(A
−) ≤ 0 =⇒ λ(A−) ≤ 1

n
·µ(A−) =⇒ let

n→∞ : λ(A−) ≤ 0 =⇒ λ(A−) = 0. Now, λ(A+) > 0 since λ(Ω) > 0 =⇒ µ(A+) > 0

by absolute continuity.

=⇒ by continuity of µ : ∃n, s.t. µ(A+
n ) > 0, but λn is positive on A+

n

=⇒ take E := A+
n , ε :=

1
n
.

THEOREM 8.5.
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