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REAL ANALYSIS

Preface

These notes are compatible with the MA337 course (Fall 2025) at SUSTech, and part of

the course-notes-and-resources initiative: SUSTech-Kai-Notes.

I tried my best to make sure every statement and proof make sense, and I made some
complements, which might be useful, to the original contents of the course. For instance,

the Dynkin classes.

I would like to express my sincere gratitude for Prof. Ilya Kossovskiy, who gave intriguing
lectures with almost everything memorised in his mind (without keeping copying from

some references during his lectures).

Main reference:

A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional
Analysis: translated from the first (1954) Russian edition by Leo F. Boron, Gra Ylock
Press, 1957.

(There is also a Chinese version of the book published by Higher Education Press, 2006.)
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1 Set Theory

This section is a crash course on set theory.

©O®SO® 1 —


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 1 Set Theory

1.1 Elements of Set Theory

A set is a collection of well-defined objects. In fact, we cannot have a definable notion of
a set.

Notation: A set consists of its elements: a € A;

(): empty set, i.e. Va, it holds z ¢ 0.
DEFINITION 1.1. AC B (Aisincluded in B) if Va € A = a € B.

Proposition 1.1. V set A, ) C A.

DEFINITION 1.2 (Complement of a Set). Let A C €2, then the complement of A in
Q2 is defined as A= {zx € Q: 2z ¢ A}

Question: Why should we be careful with the notion of sets?

FEzample 1.1 (Barber’s Paradox). This is a paradox proposed by British philosopher and
mathematician Bertrand Russell.

Imagine that in a city X, there are residents with one of them being a barber. It’s
known that the barber only shaves everyone who doesn’t shave himself. Does the barber
shave himself? This leads to a contradiction.

Mathematically speaking, there doesn’t exist a set of all sets.

DEFINITION 1.3 (Power Set). Let A be a set, then the power set of A is defined as
24 = { all subsets of A }.
Proposition 1.2. [24| = 2141 if A is finite.
DEFINITION 1.4 (Set Operation). Let A, B be two sets, then
1. Union: AUB={z:2¢€ Aorxzec B}
2. Intersection: AN B ={z:2 € Aand z € B}.
3. Difference: A\ B={x:2z € A and = ¢ B}.
4. Symmetric Difference: AAB = (A\ B)U (B \ A).

Remark 1.1. Union and intersection can also be defined for any amounts of sets by using

index set. Let E be a set. Vo € E/, we associate it with a set A, and then define Uae A

and (,cp Aa-
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Figure 1: union Figure 2: intersection

Figure 3: difference Figure 4: symmetric difference

Notation: | |,.p Ao means disjoint union, i.e. Vo, f € E, a # 3, we have A, N Ag = ().

Proposition 1.3. 1. Commutativity: AUB=BUA, ANB=BNA;
2. Associativity: (AUB)UC =AU(BUC), (ANnB)NC=An(BNC);
3. Distributivity: AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC);
Note: If we view U as & and N as ®, then we get aioms of a commutative ring in

algebra.

4. De Morgan’s Laws: ({U,cp Aa) = Nacr Ao (Nacr Aa)® = Uner A%

Proof. Let € be the whole space. We only prove the first identity.
l.Vee LHS, z € Qand z ¢ |

aeE

=>VaeEx¢ Ay =>VaeFExe AS =xe()

2.V € RHS,Va € E,z € A% and = ¢ )

aEE
ocEE

=VacE,xcA, #VO&GE(L‘EACi'TEUaeE

Thus, LHS = RHS. O

DEFINITION 1.5 (Cartesian Product). Let A, B be two sets, then the Cartesian
@O0 3 —
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Product of A and B is defined as A x B ={(a,b) : a € A,b € B}.

Example 1.2. R? =R x R, R"=RxRx--- xR

n times

©O®SO 4 —


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 1 Set Theory

1.2 Functions between Sets

1.2.1 Mappings, Functions

DEFINITION 1.6 (Function). Let A, B be two sets, then a mapping is a set X C Ax B,
s.t.

1. Ve € X, Jy € B, s.t. (z,y) € X;

2. Vo € A, Vy1,y2 € B, if (x,y1) € X and (x,y2) € X, then y; = ys.

Such a mapping is called a function.

Notation: y = f(z) (function <> mapping).
DEFINITION 1.7. 1. Injective: f(z1) = f(z2) = 71 = 2.

2. Surjective: Yy € B, 3z € A, s.t. f(z) = .

3. Bijective: both injective and surjective.

(bijection <» equivalence <+ one-to-one mapping)

1.2.2 FEquivalence Relations

DEFINITION 1.8 (Equivalence Relation). Let A be a set, then an equivalent realtion
on A is a subset X C A x A, with the following properties:

(Notation: = ~ y if (a,b) € X)

1. reflexivity: = ~ x;

2. symmetry: © ~y =y ~ T;

3. transitivity: x ~ y,y ~ 2 = = ~ 2.
DEFINITION 1.9. Having an equivalent relation, an equivalent class of an element
x € Ais defined as [z] :={y€ A:y ~ z}.
Proposition 1.4. Two equivalent classes either coincide or don’t intersect.

THEOREM 1.5. 3 aset £ C A, sit. A = ||,cpXa, i.e A is a disjoint union of

equivalent classes.

Thus, each equivalent class can uniquely identified by randomly selecting one element

from the class, which is called a representative of the equivalent class.

©O®SO 5 —
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Ezample 1.3. Let A = C: the complex plain. z ~ w if |z| = |w|.

Then C = | | ) O, where G = {z € C: [z[ =71}

rel0,+o00
DEFINITION 1.10. Two sets A, B are called equivalent if there exists a bijection

f:A— B.

From now on, we focus on equivalence relation of sets based on the above definition.

1.2.3 Cardinals, Countable Sets

DEFINITION 1.11 (Cardinal). Let X be a set of sets. This gives an equivalent relation
on X. We obtain equivalent classes of sets. Each equivalent class is called a cardinal

(cardinal number).

Notation: |A]: cardinal of set A.
Remark 1.2. 1. Define 70” = emptyset, "1” = {0}, "2” = {0,1}, 73" = {0, 1, 2}, etc. So,
the number "n” is really a set with n elements in it.

2. A set A is called "finite” iff there is some n and a function f: A — {1,2,...,n}

which is bijective.

3. A set A is called ”infinite” iff it is not finite.
Ezxample 1.4. A={ay,as,...,a,}, B={b1,ba,...,by,}, then A ~ B n=m.
DEFINITION 1.12 (Countable Set). A set A is called countable if A ~ N.

A countable set is also called listable, which means we can list all its elements in an

infinite sequence.

So, the key to prove a set is countable is

1. to find a bijection between the set and N;

or

2. to find a way to explicitly list out all elements of the set without repeating or
missing a single element.
DEFINITION 1.13 (At Most Countable Set). A set A is called at most countable if

A is finite or countable.

Proposition 1.6. A set A is infinite < A D B, where B is a countable set.

©O®SO 6 —
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Proof. <: Obvious;
=: Take a; € A, then take A\ {a;} which is also infinite. So we can take ay € A\{a;},
then take A\ {a1, a2} which is also infinite. Repeat this process.

Let B = {ay,as,as, ...} where all a; are distinct = A D B. O

©O®SO 7 —


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS

1 Set Theory

1.3 Standard Equivalences

1.3.1 Important Examples

Ezrample 1.5. 1. Z~N

Proof. We just list all the elements of Z: Z = {0,1,—1,2,-2,...}.

2. Q~N
Proof.
1 2 3 4
110/1 1/1 2/1 3/1
200/2 1/2 2/2 3/2
310/3 1/3 2/3 3/3
410/4 1/4 2/4 3/4

Start from (1, 1) and move along the diagonals: (1,1), (1,2),(2,1), (3,1),(2,2),(1,3),...

while we skip those fractions that are not in the lowest terms (repeated).

This gives us the following sequence:

,... which is a listing of

all positive elements in Q. Then, using the same trick as we listing all elements in

Z, we have Q ~ N.

3. R~ (0,1)

Proof. 1. (a,b) ~ (¢,d): y = ax + B;

2. f(x) = arctan(z): R — (=3, 7).

Composing 1 and 2, we can get R ~ (0, 1).

4. (a,b) = |a, b

Proof. We only need to prove (0, 1) ~ [0, 1].

©O®SO
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3 =0
%, r=1;
Define f(z) =
—s, r=neN
x, otherwise;
\
It is easy to check that f is bijective. O]

1.3.2 Continual Sets, Cantor’s Theorem

DEFINITION 1.14 (Continual Set). A set A is called continual if A ~ R.
Remark 1.3. continual sets ~ R ~ [a, b] ~ (a,b).

Question: Is continual the same as uncountable?

THEOREM 1.7 (Cantor’s Theorem). V set E: E « 2F.

Proof. Assume rather: 3 a bijection f : F — 2F.
Consider A={zr e E:x¢ f(x) €2F} C E= Ae2F.
Since f is bijctive, there exists a unique a € FE s.t. A= f(a).
Question: Is a € A?
1. If a € A, then by definition of A, a ¢ f(a) = A. Contradiction.
2. If a ¢ A, then by definition of A, a € f(a) = A. Contradiction.

So such bijection f doesn’t exist = E ¢ 2F. O

Now, let’s consider 2V,

In fact, 2% ~ { all sequences of {0,1} } (each 0 and 1 meaning whether en element in
N is in the subset or not).

Reminder: Vz € [0, 1], x can be written as x = 0.ajaza3 . .., with a, € {0, 1}Vn.

Method: Using bisection method, if z € [0,1) = a; =0, if z € [, 1] = a; = 1. Repeat
this process for each subinterval.

For example, 1 = 0.111111....

And this method of representing all elements in [0, 1] can cover all elements in { all

sequences of {0,1} }. Also, we don’t have two elements in [0, 1] corresponding to the same

©O®SO 9 —
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sequence of {0, 1} except those like 0.1000--- = 0.0111.... These elements are countable,
so we can just ignore them (Countable sets setminus countable real subsets can still have
at most countable elements left).

Thus, 2% ~ [0,1] and 2% # N.

= continual # countable.

Remark 1.4. We can represent the cardinal of countable and continual sets by using

Hebrew alphabet Xy and Ry, i.e. |N| =Ry, |R| = V.

©O®SO® 10 o
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1.4 Comparing Cardinals

1.4.1 Ordered Sets

DEFINITION 1.15 (Order). Let E be a set, then an order (partial order) on F is a
subset X C E x E, we write a < b with the following properties:

(Notation: if (a,b) € X)

1. reflexivity: a < a;

2. anti-symmetry: a < band b < a = a =1b;

3. transitivity: a <band b<c=a <c.

E is called a (partial) ordered set with order <.
Ezrample 1.6. 1. R: natural ordering. Take E' C R.

2. R™ with lexicographic ordering;:

T=(x1,...,20), 9= (Y1,---,Yn), then ¥ < ¢ means x; < y;,Vi € [1,n]

Note that not all elements are comparable, e.g. (1,2) and (2, 1) are not comparable.
DEFINITION 1.16 (Linearly Ordered Set). We add the forth axiom to the definition
of order:

4. comparability: Va,b € E, it holds a < b or b < a.

Then E' is called a linearly ordered set with order <.
Example 1.7. Still take E C R.

DEFINITION 1.17 (Well Ordered Set). We add the fifth axiom to the definition of
linearly ordered set:
5. least element: VA C E, A has its least element, i.e. Ja € A, s.t. a < z,Vx € A.

Then FE is called a well ordered set with order <.
FExample 1.8. N with the usual order.

FExample 1.9. A linearly ordered set but not a well ordered set

Z, with the usual order.

Zi.y C Z but it doesn’t have a least element.

©®SO 11 <o
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1.4.2 Zermelo’s theorem, Cantor-Bernshtain Theorem

The sets of all cardinals actually can have order, which follows our intuition.
DEFINITION 1.18. For two cardinals C; and Cs, we say that C; < (5 if for some
representative set £y € Cy and Fy € Cy, it holds Ey ~ E} C E, for some El) C Es.
FExample 1.10. Natually, g < Ny since N~ N C R.

THEOREM 1.8 (Zermelo’s Theorem). V cardinals Cy,Cy, it holds: either C; < Cy or
Cy < (4, ie. Vset A B, either A~B' C B orB~A CA.

THEOREM 1.9 (Cantor-Bernstein Theorem). If |X| < |Y/|, and |Y]| < |X]|, then
[ X] =Y.

Proof. Let f: X —Y and g : Y — X be injections.
Consider a point z € X.
o If z € g(Y), we form g~'(x) €Y.
o If g71(z) € f(X), we form f~!(g7!(x)), and so forth.
Either this process can be continued indefinitely, or it terminates with an element of

X\ g(Y), or Y\ f(X).

In these 3 cases we say that z is in X, Xx or Xy.
— X =X UXxUJXy.

In the same way, Y =Y, U Yx UYy.
Clearly, X, & Yoo, Y & Xy, Vv & Xy,

Therefore we define h : X — Y by

flx) ifrze X oUXx
h(z) =

g l(x) ifxeXy

Then h is bijective. O]

Corollary 1.10. The set of all cardinal numbers is linearly ordered.

©®SO 12 <o


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 1 Set Theory

Further, we have the theorem below also by Zermelo.
THEOREM 1.11 (Zermelo’s Theorem). Cardinal numbers are actually well ordered.

So, one can natually order cardinals.

©O®SO® 13 o
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1.5 Continuum Hypothesis and Exercises

Cantor Theorem means |E| < [2¥| = 3 larger and larger cardinals.

For example, [N| = Xy < |R| = N;.

1.5.1 Continuum Hypothesis

Famous Open Question: Continuum Hypothesis

We know that Ry < ¢ (where ¢ = 2%0).

Question: Does there exist a set A such that Ry < [A] < ¢?

THEOREM 1.12. This question has no solution! (i.e. the existence of such set cannot

be proved or disproved). This is an illustration of Gddel’s Incompleteness Theorems.

1.5.2 A Few Exercises
Ezxample 1.11. Prove R\ N ~ R.

Proof. Clearly, R\ N C R. On the other hand, R\ N D (0,1) ~ R. By Cantor-Bernstein
Theorem: R\ N ~ R. O

Ezample 1.12. Prove that C[0,1] ~ R, where C[0, 1] is the space of continuous functions
on [0, 1].

Proof. Reason: A continuous function is uniquely determined by its values at z € Q!
(f(z) = limg, s 0,0 f(20)-

Thus, |C[0,1]] < |{f : QN [0,1] — R}|. Let’s analyze this cardinality. [{f : Q —
R} = [RY = (g% = (20 = 2% = 2% = c = R,

On the other hand, constant functions are in C[0, 1], soR € C[0,1] = |R| < |C[0, 1]|.

By Cantor-Bernstein Theorem, |C10,1]| = ¢ = |R|. O

©®SO 14 <o
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1.6 Axiom of Choice and Zorn’s Lemma

DEFINITION 1.19 (Axiom of Choice). Let {A4}aer be a group of sets (meaning a
family of sets indexed by I). Then there exists a function f : I — |J,.; Aa such that
f(a) € A, for all a € I. (This essentially means we can ”choose” one element from each

set simultaneously).

This axiom has several equivalent formulations, and the most applicable one is as

follows:

THEOREM 1.13 (Zorn’s Lemma). Let E be a (partially) ordered set. Assume that the
followings hold: Every chain A in E (i.e. a subset A C E where every 2 elements are
comparable) has an upper bound in E (i.e. 3s € E s.t. x < s,Vrx € A).

Then E has a maximal element m (i.e. Px € E s.t. m < x, or equivalently
Ve Em<z = m=xz).
Remark 1.5. Axiom of Choice <= Zorn’s Lemma.

One application of Zorn’s Lemma is the existence of a basis in a linear space (even
infinite-dimensional).
DEFINITION 1.20 (Basis of a Linear Space). A basis for a linear space V' is a system
S = {e,} such that:
1. There are no (finite) non-trivial linear combinations between elements of {e,} equal
to 0 (i.e. {e,} are linearly independent).

2. Any x € V is a (finite) linear combination of elements of {e,}.
Remark 1.6. Generally there is no way to see (construct) a Hamel basis.

THEOREM 1.14. Any linear space V' admits a Basis (called the Hamel basis).

Proof. Let E' = {the set of all linearly independent systems of vectors in V'}. Let’s intro-
duce ordering on E: S; < Sy <= 51 C S,. It is easy to check that we’ve got a partial
order.

Now, let’s check that the conditions of Zorn’s Lemma are satisfied. Take a chain

{Sataca C E. Then {S,} has an upper bound: S = |J .4 So- Then S is also a linearly
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independent system. (Why? Any finite linear combination in S involves finite elements,
which must all belong to some S,, because {S,} is a chain. Since S,, is lin. indep., the
combination is trivial.) S is clearly an upper bound for {S,}.

By Zorn’s Lemma, 35, - a maximal linearly independent system. We claim Sy is a
basis. If not, 3x € V' which is not in the span of Sy. Then Sy U {z} is a strictly bigger lin.

indep. system. This contradicts the maximality of S;. = 9 is a basis. m
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2 Metric Space
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2.1 Metric Space and Normed Space

DEFINITION 2.1 (Metric Space). A metric space is a set X equipped with a given
p: X x X — R (distance function (metric)) with the following properties:

1. p(xz,y) >0 and p(x,y) =0 <= z =y (nondegeneracy).

2. p(z,y) = p(y,z) (symmetry).

3. plz,y) < p(x,2) + p(z,y),Vr,y, 2 € X (triangle inequality).
Ezxample 2.1. 1. X =R, p(x,y) = |z — y|.

1, x#y
2. Any set F with p(x,y) = .

0, z=y
Proposition 2.1. If X is a metric space, VY C X, Y s also a metric space with the

same p.
Ezample 2.2. N C R; (a,b) C R.
DEFINITION 2.2 (Normed Space). A normed space is a linear space X equipped
with a function || - || : X — R with the following properties:

1. ||z|| > 0 and ||z|| =0 <= x =0.

2. Jaz|| = |a|||z]|,Vz € X,a € R.

3. [lz+yll < llzll + llyll (indicating [lo — y|| < llz — 2] + ||z — yl]).

Fact: A normed space is a metric space with p(x,y) := ||z — y||. (For symmetry:
lz =yl =1 =y =)l = [=1lly =zl = lly = =[]).
Brample 2.3. R™ with ||z| = 1/ 22. Accordingly defined scalar product in R™: (x,y) =
S @y Then |z]| = \/(z, ). Triangle inequality: ||z +y|| < ||lz|| + lyl| <= (z +
yox+y) = (z,2) + (1,y) + 2, y) < [z + 1yl +2lllyl <= (z.9) < V(2 2)(y,y)
(Cauchy-Schwarz Inequality).
Remark 2.1. A more general fact is that any scalar product space (Euclidean space) is a
normed space. So, R™ and all its subsets are metric spaces with p(z,y) = \/m :
Example 2.4. 1. Cla,b] = {cts. func. on [a,b]}. ||f| = max,cpy |f(2)|. p accordingly

defined.
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2. 0 ={{x;} : 2005 |wj|* < oo}
3. X ={Cla,bl],but equipped with the norm || f|| := fab |f(z)|dx}.
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2.2 Topology of Metric Spaces

DEFINITION 2.3 (Ball). An open ball in a metric space X with center a € X and
radius R > 0:

Br(a) ={x € X : p(z,a) < R}.

Closed ball: Br(a) = {z € X : p(z,a) < R}.

1, z#y
Ezample 2.5. Any set E with p(z,y) = . Byjs(a) = {a}, Bs(a) = E.

0, r=y
Ezample 2.6. R™, B1(0): Euclidean. ||z| = max |z;| (cube). [|z|| = >_ ||

From now on, let X denote a metric space.
DEFINITION 2.4 (Open Sets). A set G C X is called open if Va € G,3e > 0 s.t.
B(a) C G.
DEFINITION 2.5 (Closed Sets). A set £ C X is closed if X \ E is open.

Ezample 2.7. Open sets in R: | J open intervals. (Could be made possible by selecting the
intervals).
Proposition 2.2. 1. [J,c4 Ga is open if VG, is open.
2. Naea Eao is closed if VE, is closed. (Follows from 1) and X \ (1 E, = J(X \ E.)).
3. G - open, E - closed — G\ E is open.
Remark 2.2 (Metric Subspace). If X - a metric space, Y C X - a metric subspace, then
G CY isopeninY iff G =Y NG with G open in X. (Subspace topology). Example:
X =R, Y =[0,1]. G = (0,1]. This is relatively open! Not open in X. G is open in Y’
since G = (0,00)NY.

Remark 2.3. Bg(a) - open. Bg(a) - closed (in our metric space).

Proof. Choose b € Br(a). Let ¢ = R — p(a,b). B.(b) C Bg(a). (Triangle inequality:

p(x,a) < p(z,b) + p(b,a) < e+ p(a,b) = R). O

DEFINITION 2.6 (Convergence). A seq {z,} C X is convergent to a € X (Notation:

limz, =a or x, — a), if Ve > 0,3N s.t. Vk > N, x), € B.(a). (Equivalently: p(zx,a) —
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0). We can say instead of B.(a), “open neighborhood of a”.
DEFINITION 2.7 (Interior Point). An interior point ¢ € E is a point such that
dB.(a) C E.
E° := the interior of F = {the set of all its interior points}. (Open by its definition).
DEFINITION 2.8 (Exterior Point). An exterior point of F is an interior pt of X \ E.
Exterior of £ = (X \ E)° = {all exterior points}.
DEFINITION 2.9 (Boundary Point). A point a € X is called a boundary point of F
if it’s neither interior nor exterior.
(i.e. Bc(a) contains pts both from E and X \ E).

OF := the boundary of E = {all boundary points}.
Proposition 2.3. V point a € X s either interior, exterior or bdry.

DEFINITION 2.10 (Closure Point). A point a is a closure pointt for £ C X, if it’s

either interior or boundary pt of F.

E := the closure of E = {all closure pts}.
Ezample 2.8. Any isolated point is a closure point. {a} C F, {ax} — {a}
Lemma 2.4. F = E°UJE.
DEFINITION 2.11 (Accumulation Point). a € X is an accumulation pt (limit pt)
for E C X, if B(a) contains a pt b € E,b# a. ({ar} C E,ar # a,ar — a).
Fact: F is the smallest closed set containing E.
Ezample 2.9. 1. Let E=QCR. E°=0,(X\E)°=0,0E=R. E=R. Va € R is
an accumulation pt.
2. E=(0,1). (X\ E)° = (—00,0)U(1,+00). E = {0,1}. E = [0,1]. {accumulation
pts} = [0, 1].
3. E=ZCR. E°=0. (X\E)=UMn,n+1). 0E =Z. E = Z. {accumulation pts}
= 0.

THEOREM 2.5. Characterization of Closed Sets

Let X - a metric space, E C X. TFAE:
1. FE is closed.
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2. E=E.
3. 0E C E.
4. E D {accumulation pts}.

Proof left as homework.
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2.3 Continuous Map

DEFINITION 2.12 (Continuity at a Point). Let X, X’ be two metric spaces separately
equipped with p, p’. A map f: X — X' is called continuous at ¢« € X if Ve > 0,35 > 0
(depending on €, a) s.t.

f(Bs(a)) € B(f(a)).

f is called continuous if it is continuous at Va € X.

Remark 2.4. If X = R with the standard metric, f is called a continuous function on

X.

Proposition 2.6 (Characterization of continuity). f: X — X’ is continuous <= VG’

(open in X'), f~1(G') is open in X.
Proof. Left as homework. m

Remark 2.5. Algebraic properties of continuous functions (f +g, f - g,...) persist with

word-by-word the same proof.

Proposition 2.7. E is closed <= E contains all its accumulation points.

Proof. Let E be closed. X \ E is open. Now, if @ is an accumulation pt. and a € X \ E.
By openness, 3B.(a) C X \ F = B.(a) has no pts in E. = a is not an accum. pt.
Contradiction.

Let E contain all its accum. pts. Take a € X \ E. a is not an accum. pt. If
B.(a) ¢ X\ E = B.(a)NE #0. = ais an accum. pt. (since a ¢ E). = a € E.

Contradiction. So B:(a) C X \ E = X \ E is open. O

Proposition 2.8. 1. Map f is cts <= f~1(G) is open for G-open.
2. Algebraic operation of + g, f - g, f/g(g # 0) with continuous functions again gives
cts. func.

3. Composition: X ENENy X, Y, Z - metric spaces. f,qg - cts. go f: also cts.

Proof. (g0 f)71(G) = f~(g7(G)) - open. O
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4. f: X =Y cts < [ is sequentially cts. i.e. Ya € X Vi — a(k — 00) we

have f(xy) — f(a).

Proof. “=": ¥z > 0,36 > 0 s.t. f(Bs(a)) C B.(f(a)). Since z; — a, IK € N s.t.
play,a) < 6,Yk > K. => x;, € By(a) = f(xx) € B.(f(a)).

“<"; Suppose f is not continuwous. Je > 0 s.t. V6 > 0, f(Bs(a)) ¢ B.(f(a)).
Choose § = 1/k. 3xy, € Byjp(a) s.t. f(zx) € Bo(f(a)). zx — a but f(zx) A fla).

Contradiction. O]
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2.4 Compactness

2.4.1 Compact Sets

DEFINITION 2.13 (Compact). A metric space K is called compact, if every open
covering of K admits a finite subcovering. ie. if K = |J,.4Ga (Go open), then
Jag,...,a, € Ast. K = U?Zl Ga,.

Ezxample 2.10. 1. K = [a,b] C R. (Heine-Borel Lemma). v/

o)
n=1

2. (a,b) C R is not compact. (a,b) = J;~,(a+ +,b). No finite subcovering|
3. Any (closed) cell in R™: C' = [ay,b1] X -+ X [an, by]. v

Proposition 2.9. 1. A closed set E in a compact space K is compact itself.
Proof. E C|J,cy Ga- Add Gy = K\ E (open in K). Then K = (J,c4 Ga) U Gy is

an open covering of K. = 3 finite subcover G,,,...,G,,, Gy. Remove from it (if

needed): Go. Then E C Uj_, Go;. = E=EN(UGy) =UENG,,)). O
2. If X is a metric space, K C X is a compact subspace, then K is closed.

Proof. Choose a € X \ K. Vb € K, 3Bg,(a), B,,(b) s.t. Bg,(a) N B,,(b) = 0. (Re-
mark: metric spaces have the Hausdorff Property: Va,b € X, a # b,3B.(a), Bs(b)
s.t. Be(a) N Bs(b) = 0). Trivially: K C (Jyex Br,(b). = 3 finite subcovering
K c U, By, (b;) = V. Let G =N}, Bk, (a). G is an open ball (intersection
of finite open balls around a, we take min radius). GNV =0 = GNK = (.

GCX\K = X\K is open. O
3. X - metric space, K C X - compact. Then K is bounded. (i.e. K C Bgr(a)).

Proof. K C Juex Bi(a) = U,ex Bi(xz). == finite subcover K C Ujvzl By (x;).

= bounded. O

Corollary 2.10. K C R" is compact <= K is bounded and closed.

Remark 2.6. Very different for co-dim op!
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DEFINITION 2.14 (Centered System). Let {F,}aca be a system of subsets in a
metric space X. Then it’s called centered if any finite intersection is non-empty. i.e.
Vau,. .. an € A, (N2 Fo, # 0.

THEOREM 2.11. K is compact <= any centered system of closed subsets of K has

a nonempty intersection.

Proof. “=7: Suppose a centered system of closed subsets {A,} of K, s.t. (A, = 0.
— K=K\0=K\NA4s =U(K \ A4,). K\ A, are open. = 3 finite subcover
K =Uj_ (K\A,,) = K\, Ao, = =, Aa; = 0. It's not centered! Contradiction.

“<”: Suppose K = |JG,, G,: open subset of K. Let A, = K\ G,. If {G,}
has no finite subcover, then (\;_; Ao, = K\ Uj_; Go, # 0. = {A,} is centered.
—> (A, # 0 (by assumption). = K\JG, #0 = K # |JG,. Contradiction. [

2.4.2 Sequential Compactness

DEFINITION 2.15 (Sequentially Compact). A metric space K is called sequen-
tially compact, if every infinite subset £ C K has a limit point (accumulation point).

(Equivalently: any sequence {a,} C K contains a convergent subsequence).

Claim: A sequentially compact K is complete.

Proof. Take a Cauchy seq {a,} C K. {a,} has a convergent subsequence a,, — a.
Ve > 0,3dN € N : Vk, 1 > N it holds p(ag,a;) < €. So choose ng > N s.t. p(an,,a) < €.

plam, a) < p(am, an,) + plan,, a) < 2€. O

THEOREM 2.12. K is compact <= K 1is sequentially compact. Summary of
equivalence: K is compact <

1. K s sequentially compact.

2. K 1s complete and totally bounded.

3. (In R") K s closed and bounded.

Ezample 2.11 (Counter Example for dim X = co0). K = B;(0) in X = C|0, 2] (Banach,

complete normed). Consider f,(x) = sinnz € K. ||f,|| = 1. Consider | f, — ful =
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max | sinnz — sinmaz|. For n # m, [ (sinnz — sinma)2de = 27, Integral - 0. = no

subsequence converging with uniform norm. K is not compact!
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2.5 Totally Boundedness

DEFINITION 2.16 (Totally Bounded). A metric space K is called totally bounded,
if Ve > 0,3 a finite e-net for K. Set E = {z1,...,2,} s.t. Ve € K,3z; € E: p(x,x;) < €.
In other words: K = Ji_, B(z;).

Proposition 2.13. If K s totally bounded, then any A C K 1is totally bounded.

Proof. Ye > 0, take a finite ¢/2-net ¥ C K for K. E = {xy,...,2,}. Now, if
Bejo(z;) N A = 0, remove it. If B.a(x;) N A # 0, choose y; € Beja(x;) N A, Then
E" = {all chosen y;} C A is an enet for A. (Vz € A, 3z; € E : p(z,2;) < €/2. Also

plyj, x;5) < €/2. p(z,y;) <e€). O
Proposition 2.14. Totally bounded K 1is separable.

Proof. Let E, be a finite 1/n-net for K. Let E = |J,_, E,,. E is a countable union of

finite sets = countable. £ C K. FE is countable dense subset by def. O]

Corollary 2.15. Totally bounded K has a countable base.

Proposition 2.16. If K is sequentially compact, then K is totally bounded.

Proof. Assume by contradiction: Je > 0, no finite e-net for K. Pick z; € K. {x1} is not
an e-net. == 3xq, p(x1,22) > €. By = {1, 22} is not an e-net. = 33, p(z3,2;) >
6,7 = 1,2. We could get a sequence {z,} s.t. p(zn,zn) > €,¥n # m. = no convergent

subsequence. O

Proposition 2.17. If K s a space with a countable base, then K is compact <— K is

sequentially compact.

Proof. 1st “=7: obvious (from general topology). 2nd “<”: Let K = |J Gy, G4 - open.
{V;}jen a countable base. Then VG, is some union of {V;}. Take those V;: only those
which are “necessary” for forming {G,}sca. Countable subcovering {Vj, }ken. Now,
{V;.} is a countable covering of K. If we prove that countable covering admits a finite

subcovering, then we are done. Actually, we just need to check the compactness of K
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on countable centered system of closed subsets. (Proof similar to arbitrary centered

system). O
Proposition 2.18. If K is sequentially compact, then it’s compact.

Proof. By the above prop, K is seq. cpt => K is complete = K is separable — K
has a countable base. By the last prop, to check the compactness of K, only need to show:
Countable centered system of closed subsets {F};} has (] F; # (). Choose z; € F;,Vj. {z;}
aseqin K = {x;} contains a convergent subseq z,, — x. Since F; contains nearly all
the terms in {z,, } (except for finite exceptions in the front of the seq), x is a closure pt

of F;,Vj. Since VF} is closed = z € F;,Vj. = z € F; # 0. O

THEOREM 2.19. Main Theorem on Compactness

Let K be a metric space. TFAE:
1. K s compact.
2. K 1s sequentially compact.

3. K is complete and totally bounded.

Proof. (1) <= (2): Proved above. (2) = (3): Proved (seq cpt = complete; seq
cpt = tot bdd). (3) = (2): We need to prove that any infinite subset £ C K has an
accumulation pt. K is totally bounded == choose a finite 1-net. K = U;VZI By(y;). One
of the balls contains oo elements of E. Fix it and call it K;. K; C K - tot bdd. Choose
in K a finite 1/2-net. K, C |J B1/2(%;). One of the balls contains oo elts of £. Fix it
and call it Ky. Get aseq K D K1 D Ky D ... K, is a ball of radius 1/n (contains oo elts
of F). Let’s “double” all these balls! (Consider closures). K, C A, = Bl/n(')- Now, by
the nested ball principle: (2, A, = {a}. a is a limit of an co seq in E. = a is an

accumulation pt. O
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2.6 Continuous Functions on Compact Sets — C(K)

C(K) := {continuous f : K — R}.

2.6.1 Properties of C(K)

Proposition 2.20. Let f € C(K), K - compact.
1. f is bounded on K.

Proof. Assume rather: Vn € N, 3z,, € K : |f(x,)| > n. {z,} C K = 3 converg.
subseq x,, — a. f-continuous = f(z,,) — f(a). But |f(x,, )| > ng — .

Contradiction. ]
2. f attains its max and min.

Proof. f - bounded. Let M = sup,x f(x). Claim: 3z € K : f(z9) = M. Indeed,

by contrad, let f(x) < M,Vz. Consider g(x) = Mff(x). g€ CK) = gis

bounded on K. g(z) < C. M+M§C = M—flx)> % = fl&) < M- ¢

Contradicts M = sup f(z). Similarly, m = min f(z). O

3. f is uniformly continuous. (i.e. Ye > 0,36 > 0 : Va,y with p(x,y) < 0, it holds
[f(z) = f(y)l <€)

Proof. Assume, by contrad: Je > 0,V > 0, Jzs,ys : p(zs,ys) < 0 but |f(xs) —

flys)| > €. Pick § = 1/k, k € N. p(ay,yr) < 1/k. But there exists convergent seq

Tne = @ P(Yng @) < P(Ynyes Tny) + (T, @) = 050 Yoy = @ [f(2ny) = Fyn,)| =
|f(a) — f(a)| =0. But |f(zn,) — f(yn,)| > €. Contradiction. O

Remark 2.7. Properties 1 & 3 identically hold for func-s valued in metric space. (e.g.

f: K —=Y). For ex. for C-valued funcs.
C(K) := {continuous f : K — R}.

Let [|f|| = max,er | f(2)]. p(f,9) = [If — gl = max|f(x) — g(z)].

C(K) is a normed space.

Proposition 2.21. C(K) is a Banach space (i.e. it’s complete).
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Proof. Same proof as in Calculus. If {f,} is a Cauchy sequence in C(K) = {f,} is
uniformly Cauchy. — Jlim f,,(z) = f(z) on K. f € C(K). ||f. — f|| — 0. O

2.6.2 Compactness in C(K)

DEFINITION 2.17 (Equicontinuity). A set E C C(K) is called equicontinuous, if
Ve > 0,30 > 0:Vf € E, with p(x,y) < d it holds |f(x) — f(y)| < e.

Ezample 2.12. Let E = {f € C'a,b] : max|f'(z)] < M}. Then |f(z) — f(y)| =
| (&)]|lx —y| < M|z —y|. Ye >0, take § = €¢/M. E - equicontin.

DEFINITION 2.18 (Precompact). A set E in a metric sp X is called precompact if
E is compact.

THEOREM 2.22 (Arzela-Ascoli Theorem). A set E C C(K) is precompact <= E is
bounded and equicontinuous. (Unif. bdd: IM :Vf € ENx € K, |f(z)| < M).

Proof. “=": Let E be precompact. E is cpt = E is closed & bdd. WTS: equicontin.
Use €/3-net for E: fi,..., fo. Vf € E, takea f;: ||f—f;|l <¢€/3. {f1,..., fa} is equicontin
on K (finite set of cts functions). 36 : Va,y, p(x,y) < 0, it holds |f;(z) — f;(y)| < €/3.
7@) = S| < 1 @) = f5(@) +165(@) = HO]+150) - F)] < /3 +¢/3+¢/3 =
“<": Given E-bounded, equicontin. WTS: any seq {f,} C E contains a convergent
subseq. Proof: 1. K is separable (since K-cpt). Let S = {x;}32, C K be dense. 2.
Fix {f,}. Vj € N, {fu(z;)}, is bdd (boundedness of £). = contains a convergent
subseq. 3. Use “Cantor’s diagonal trick”: Get {f,,} a subseq of {f,}, converging on
S pointwise. Let’s prove that {f,, } is the desired converg. subseq (uniformly). Take
Ve > 0. By equicontin. of £,30 > 0: Vz,y, p(x,y) < ¢ it holds |g(z) —g(y)| < ¢/3,Vg € E.
K =J,cq Bs(x). Since K cpt = finite subcover Bs(z1), ..., Bs(2yp). {fn,} is converg.
pointwise on {x1,...,z,}. Since {z1,...,x,,} is finite = converg. unif. on this set.
= IN,Vk,l > N,|fn.(x;)—fn,(z;)| <€/3,¥j=1,...,m. Now take Vy € K. y € Bs(x;)
for some j. | fn,, () = i ()] < [Fr () = Frui (@) |+ | Foo (25) = foug ()| 4 i () = fri ()] <
€/3+¢€¢/3+¢€/3=¢c. = unif. conv. O
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2.6.3 Approximation in C(K)

THEOREM 2.23 (Weierstrass Approximation Theorem). Vf € C[a,b], 3{ P,(z)} - seq
of polys s.t. P,(x) = f(x). (e.g. Bernstein Polyn-s).
What about K C R"? f e C(K)?

DEFINITION 2.19 (Algebra of Functions). A subset A C C(K) is called an algebra

if it is a lin. sp + closed under multiplication.

FExample 2.13. The algebra of polynomials in R” for K C R".

Simple Property: A is also an algebra in C'(K).
THEOREM 2.24 (Stone-Weierstrass Theorem). Let A C C(K) be an algebra, 1 € A,
which separates pts: Vx # y,3f € A: f(z) # f(y). Then A= C(K). (i.e. A dense in
C(K)).

Proof. Switching from A to A, we may assume A to be closed. Step 1: Prove if f € A
then |f| € A. Consider t € [0,1]. Let p,(t) — v/t (Taylor series of v/1+ z shifted).
Ifl < M. Wlog M = 1. /f2 = |f]. po(f*) € A p.(f?) = |f|. Since A closed,
|f] € A

a+b+|a—b| a+b—|a—b|
2 2

Step 2: max(a,b) = , min(a, b) = . Vf,g e A = max(f,g) €
A, min(f, g) € A. By induction, max(fi,..., f,) € A.

Step 3: Take Vf € C(K). Let’s prove f € A. Take Ve > 0. Note: Vp,q € K,p # q,
dh € A: h(p) # h(q). By switching h — ah + € A, we may obtain h(p) = f(p), h(q) =
f(q). (Solve system: ah(p) + 8 = f(p),ah(q) + 5 = f(q)). Let this function be h,,.
hyo(p) = f(P), hpe(q) = flq). = U, 4, Vpq - neighborhoods of p, g respectively. In both
nbds, we have h,,(x) < f(z) + €. Fix p, vary q. {V,,}, open covering of K. = finite
subcovering Vy, g1y -+, Vpgn- Set g, = min{hy gy, ..., hpg } € A gp(x) < f(2) + 6,V € K.
Also, gy(p) = f(p) > f(p) —e. = 3U, nbd of p, s.t. g,(z) > f(z) — e, Vo € U,. {U,},
open covering of X' == finite subcovering U,,,...,U,, . Set g = max{gp,,...,gp.} € A.

Directly follows: |g(z) — f(x)| < €. g is an € approx of f = f € A= A. O
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3 Measure

In the next few chapters, we embark on a journey into the fundamental concepts of
measure.

This theory, developed by Henri Lebesgue at the beginning of the 20th century, provides
a more robust and general framework for integration than the Riemann integral, allowing
us to integrate a wider class of functions and providing powerful convergence theorems
essential for modern analysis and probability theory. His theory was published originally
in his dissertation Intégrale, longueur, aire (”Integral, length, area”) at the University of

Nancy during 1902.
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3.1 Semi-ring, Ring, Algebra, o-Algebra, Borel o-

Algebra

DEFINITION 3.1 (Semi-ring of Sets). A system of sets S is called a semi-ring if it
satisfies the following two axioms:

1. IfA,Be S, then ANB € S.

2. If A, B € S, then there exist disjoint sets A, Ay, ..., A, € S such that

A\ B = LI?:I Ai.

Ezample 3.1 (Semi-open Cell in R™). Iy, 5, ..., I,: intervals in R. C:=1; x Iy x ... x I,
is called a cell in R™.

semi-open interval: an interval that is closed at one end and open at the other end,
e.g., [a,b) or (a,b].

Let S be the collection of all semi-open cells in R? (not required to be finite!), i.e.
S ={la1,b1) X -+ X [an,by) : a;,b; € R,a; < b;}. Then S is a semi-ring.

Warning: Be cautious about the directions of semi-open cells! The directions of all
cells must coincide.

Question: Can we take all closed/open cells in R™?

Answer: NO! For example, [0,1] N [1,2] = {1}, (0,1)\ (1/2,1) = (0,1/2], both result
in some elements not in the original system.
Proposition 3.1. If S is a semi-ring, then

1. 0es.

2. Aziom 2 can be strengthened to: VA € S, VA, Ag,..., A, € S, Aj € A, V3, disjoint,

there exist disjoint sets Ayi1, Amao, ..., As € .5 such that A = |_|f:1 A;.

Proof. 1. ) = A\ AVA € S.
2. One can prove by induction on m: splitting the whole area A into disjoint parts. It

is easier to prove for the semi-ring {all cells in R"}. O

Remark 3.1. We now show that with axiom 1 and the strengthened condition above we

could say S is a semi-ring.
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Proof. Now axiom 1 is satisfied.

Suppose A, B € S, then A\ B=A (AN B). Let A; = B,n = 1. By our strengthened
condition, one could find disjoint sets Ay, As, ..., A; € S, st. A=|[_; 4;, ie. A\B=
LI, A v O

Thus, we have the following equivalent definition for semi-rings.

DEFINITION 3.2 (Semi-ring of Sets - Alternative Definition). A system of sets S is
called a semi-ring if it satisfies the following two axioms:

1. IfA,Be S, then ANB € S.

2. VAe S, VA, Ay, ... A, €5, A; C AV, disjoint, there exist disjoint sets

A1, Ao, ..., Ay € Ssuch that A =| |7 A,.

DEFINITION 3.3 (Semi-ring with Unity). A semi-ring S is called a semi-ring with
unity if S € 2%(«+> VA € S, A€ Q) and Q € S for some set 2. Q is called the unity of S.
Indeed, QN A=AVAES.

Ezxample 3.2. 1. A semi-ring with unity

The semi-ring of all semi-open cells in R™ (To be more precise, we need to add the
element R” into it. For convenience, we won'’t clarify this much in the future. The
reader should always keep this unity in mind.) is a semi-ring with unity R".

2. A semi-ring WITHOUT a unity

The semi-ring of all finite semi-open cells in R": NO unity (R™)!

DEFINITION 3.4 (Ring of Sets). A system of sets R is called a ring if it satisfies the
following two axioms:

1. VA, BeR, ANB e R.

2. VA BER, AAB=(A\B)U(B\A) e R.

In fact, a ring R is closed under set difference and finite unions.

1. VA,Be R, A\ B=AA(ANB) € R.

2. VA,Be R, AUB = (AAB)A(ANB) € R.

Conversely, we can derive being closed under set intersection and symmetric difference

based on being closed under set difference and finite unions as follows:
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1. VAABe R, ANB=((AUB)\(A\ B))\(B\A) € R.
2. VA, Be R, AAB=(AUB)\ (AN B) € R.
As a result, we arrive with the same definition of ring requiring closeness under set

difference and finite unions.

DEFINITION 3.5 (Ring of Sets - Alternative Definition). A system of sets R is called
a ring if it satisfies the following two axioms:

1. VA, BeR, A\ BeR.

2.VA/BeR, AUB €R.

Example 3.3. A semi-ring but NOT a ring

The semi-ring of all cells in R™: not ensuring the closeness under union!
DEFINITION 3.6 (Algebra). A ring with unity is called an algebra of sets.

FExample 3.4. A ring but NOT an algebra

Consider R = {A C N: |A| < +o0}. R is aring, but N ¢ R, which means it doesn’t
have a unity.
Proposition 3.2. 1. A ring is a semi-ring.

2.V system of sets P, 3 a minimal ring R(P) D P.

Proof. 1. Let R be a ring. Then VA, B € R, A\ B=A\ B(!) = AA(ANB) € R.
2. Start with Ry = 2%, where () is the union of all sets in P. Let { R} be the collection
of all rings containing P. Then R(P) := (), R, is the minimal ring containing P (it is

clearly again a ring!). O
Proposition 3.3. Let S be a semi-ring, then
R(S) = {U A; A € S;m e N:arbitrary} < {I_l A; Aj € S, s € N arbitrary}
=1 j=1

Proof. "&7:
Firstly, the claimed system R(S) is indeed a ring.
A=U5 A;, B=U"B;,ANB =U;;(A;NB;) € S C R(S).
= AAB = (A\ B)N(B\ A) =7, N, (A \ B;) € S CR(S).

©©@OSO 36 o


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 3 Measure

Thus, R(S) is a ring.
Next, V other ring R(S) containing S, it must contain all elements of R(S).
i.e. R(S) D R(S) = R(S) is the minimal ring containing S. O

DEFINITION 3.7 (o-algebra). A system of sets A is called a o-algebral if
1. AcC2%. Qe A,
2. A is an algebra with unity ;
3. VA, Ay, ... (finite or infinite family of sets!) with Vj : A; € A it holds U2, A; € A.
Proposition 3.4. 1. A o-algebra is closed under taking the implement: A° = Q\A € A
since a o-algebra is a ring with unity Q. It is closed under set difference.
2. 0 e A since ) =Q° orh =0\ Q.
3. A o-algebra is closed under finite or countable union thanks to its definition and the
fact that ) € A
4. A o-algebra is closed under finite or countable intersection:
VA, Ay, ... (finite or infinite family of sets!) with Vj : A; € A, we have
N2 A = R\ U (2\ 4;) € A
5. A o-algebra is closed under countable symmetric difference.
Question: What are the minimal conditions we need to define/prove a o-algebra?
Answer: I prefer the following three minimal conditions:
1. Unity: Q € A.
2. Closed under taking complement: If A € A, then A°= (Q\ A) € A.
3. o-additivity: If Ay, Ay, ... € A, then [ JZ, 4; € A.

Proposition 3.5. VS € 2% 3! minimum o-algebra A(S) D S.
Proof. Similar as the proof for R(S). O

Upshot 1:
In general:
System of sets= Semi-ring = Ring = Algebra with unity = o-Algebra.

Now, start with a semi-ring with unity S

'The terms field and o-field are sometimes used in place of algebra and o-algebra.

©O®SO 37 —


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 3 Measure

— could generate a ring R(S) (still equipped with a unity 2)

— A ring with unity is actually an algebra with unity!

— An algebra of sets: A(R(S)) = A(S).

Upshot 2:

A system of sets S

— ensuring the two axioms: closeness under intersection and being able to be decom-
posed into some disjoint subsets

— A semi-ring!

— could generate a ring R(S)!

— A ring which satisfies closeness under: (intersection and symmetric difference) or
(union and difference)

— equip with a unity

— An algebra of sets!
DEFINITION 3.8 (Borel g-algebra). The Borel o-algebra on R” is defined as the
minimum o-algebra containing all open sets in R™, denoted as B(R™). And the elements
in B(R") are called Borel sets.

Note that B(R?) also contains all closed sets in R? since it is closed under difference
(open — semi-open — closed).

Thus, an alternate definition of B(R?) is the minimum o-algebra containing all closed
sets in RY,

In advanced probability theory, we focus on such Borel o-algebra to study all possible

events. One can find more in Foundations of the Theory of Prabability by A.N.Kolomogorov.
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3.2 Measure, Measure Space

3.2.1 Measure

DEFINITION 3.9 (Measure on a Semi-Ring). Let S be a semi-ring. A function
S —[0,400) is called a (finitely additive) measure on S if it satisfies the following
two axioms:

1. (Non-negativity) VA € S, u(A) > 0.

2. (Finite Additivity) If A, Ay, Ag,..., A, € S such that A = [ [, Aj, then u(A) =

21 (A;).

Proposition 3.6. 1. u(0) =0.

2. VA, B € S, A C B, we have pu(A) < u(B).

Proof. 1. 0=0U0= pu(0)=2u(0).
2. Since S is a semi-ring, there exist Ay, As,..., A, € S,st. B\A=|]_, 4,
S B= AP Ap) = #(B) = j(A) + T2_u(Ay) > pu(A).
]

FEzample 3.5. On the semi-ring {all finite semi-open cells in R"}, we define a measure as
follows:

A finite semi-open cell C' = [} x Iy x. .. x I, in R™, define p(C) := I(1;) xI(12) x...xI(1,),
where [(I) :=length of I and we are measuring the cell’s ”volume”.

Such p is called the Lebesgue measure on all finite semi-open cells in R".

Proposition 3.7. YV measure on a semi-ring S can be extended (with identical proerties)

to R(S).

Proof. For A = UL, A; € R(S) with A; € R(S), define u(A) = 37, u(A;). (We
need to firstly deal with A; € S, and then gradually scan the whole R(S) based on
measure-already-defined sets.)

Well-defined (Correctness): Suppose A = UJ_; A; = Ui_; A]. We have
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YE_11(A;j) = {using the finite additivity of u, and A; = A; N A = Ui, (4; N A))}
S (S0 Ay 1 AD) = S5 (S (AL A) = S5 (A,
Non-negativity: Clearly, u(A) > 0. v/

Finite Additivity: Suppose A, B € R(S): ANB=0. A=1,_A;, B=U{_,B;, with

A;, B, € 8.
= AU B = (U_4;) U (UL, B;)
= WAL B) = X7 ju(A;) + XL pu(Bi)

Same for finite union of sets. v O

Proposition 3.8. (Proerties of a Measure on a ring R)
1. (@) =0.
2. If A,Be€ R, AC B, then u(A) < u(B).
3. (Semi-Additivity) If A C U}_ A;, with A, A; € R, then u(A) < X7 u(A; ).
Now, switch from \J;_, to | [7_,:
Set A} = Ay, Ay = Ay \ Ay, Ay = Az \ U7 A,
Now, we have Jj_, A; = |[;_, A}.
Thus, A C |[;_, A} (even more: A= (J;_, AN A=L_,(A;NA) )
Then, p(A) = j_y m(AT N A) < 27 pu(A)) < 25 u(Ay).
Remark 3.2. Question: Could prop. 5.30 (3) maintain for a measure on a semi-ring?
Why?
Answer: NO!!! The key difference between a semi-ring and a ring is that: in a semi-ring
S, the diffence between sets may not belong to S, which means though they could be
represented as disjoint unions of sets in S, they do NOT have measure defined on them!

Then the inequality chain cannot go forward anymore.

Remark 3.3. Upshot: What we have done so far:
On a semi-ring S: we can define a finite-additive measure

— extend to the whole ring generated by S: R(S)
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3.2.2 o-Additivive Measure

DEFINITION 3.10 (c-additivity). A measure p on a semi-ring S is called to satisfy
o-additivity (countable-additivity) if for any A € 5, {A;}%2, C S such that A =
L2, Aj, we have u(A) = 3272, u(A;).

Warning: A o-algebra is not necessarily o-additive!

Remark 3.4 (Semi-o-additivity). o-additivity always implies semi-o-additivity (some-

times also called subadditivity):

VA C U, A A, Aj € S, u(A) < 52 (A)).

And more importantly, finite additivity implies semi-o-additivity also!

Ezample 3.6. 1. Let Q@ =N, S = 2% Define u(A) := ¥,cap;, where p; is the “weight”
assigned to element j € N satisfying 322, p; = 1 (or any finite number). Then 4 is a
o-additive measure on S.

2. Let Q =N, S = 2% Define u(A) := |A| (if A is infinite, (A) := +00). Then u is a
o-additive measure on S. (View "weight” being 1 for all elements. This is the case
violating the requirement ” Y52 p; = any finite number” in example 1.)

3. (Lebesgue measure on all finite semi-open cells in R™)

Let S = {all finite semi-open cells in R"}. We know that S is a semi-ring.
w(C) = 1(11) x U(I3) x ... x I(I,), where [(I) :=length of I.

Then p is a o-additive measure on S.

Proof. We already know that p is a measure on the semi-ring S. p is finitely additive.
Suppose A € S, {A4;}52, € S, A= U2, A;.

WTS: p(A) = X2, 4

Step 1: Vn € N, A D U7 A;

= X7 u(Aj) = { finit — additivity} = p(L7_ A;) < p(A)

= Take limit n — oo, we have 322, u(A;) < p(A). v

Step 2: Let A = [ay, 1) X -+ - X [ay,, B,) be a finite semi-open cell in R”, and suppose
A= |_|;’i1 Aj, where each A, is also a semi-open cell, and the A;’s are pairwise

disjoint.
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Step 2.1: Partition of A into uniform subcells.

For each integer m > 1, divide each coordinate interval [a;, §;) into m equal
subintervals: IZ.(Z_) = [ozi + k(B — ) /m, a; + (ki + 1)(6; — ai)/m), k =
0,1,...,m— 1.

Define the finite family of subcells Q,,, = { ,(Cm) = ]{n,zz X X IT(:ZL 0<k; < m—l}.
Then the cells in Q,,, are pairwise disjoint and satisfy A = |_|Qe o, @

In fact, |Q,,| = m™, which is finite. By finite additivity of u, u(A) = ZQeQm 1(Q).
Step 2.2: Classification of subcells.

For each ) € 9,,, there are two possibilities:

1. @ C A; for some j;

2. @ intersects at least two distinct sets A; , A;,

Let Q% ={Q € Q,:3j, Q C A;}, 0P = Q,,\ Q.

Define A} = UQEQ;{) Q, AR = UQEQ;%) Q.

Then A = AY | | AP, and by finite additivity, (A) = p(AY) + u(AD).

Step 2.3: Estimate of ,u(A,(%)).

Since every () € 0"V is contained in some A;, and all Q’s are disjoint, ,u(Af}l)) =
D geom H(Q) < 3777, u(Ay).

Step 2.4: Estimate of ,u(Ag)).

Each @ € 0 intersects at least two distinct cells A, Aj,. Thus, every such @

1
intersects the boundary of some A;.

Denote I' = | J7, 9A;. Each dA; is contained in a finite union of (n —1)-dimensional
hyperrectangles parallel to the coordinate axes; hence I' is a countable union of such
hyperrectangles. Therefore, p(I') = 0.

Let 4,, = max; Blmo” be the mesh size of the partition Q,,. Then Agn is contained
in the ¢,,—neighborhood of I' inside A. Because I' has measure zero, for any € > 0
there exists n > 0 such that the n—neighborhood of I" has y—measure less than ¢.
For all sufficiently large m (namely m > (max;(3; — «;))/n), we have §,, < n and

hence M(A( )) < e. This shows lim,, M(A( )) =0.
Combining above, (A) = u(AW) + p(A)ie > ey H(Ay) + 1(AP), and letting
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m — 00 gives u(A) <3777 u(A;). v O

4. (Finitely Additivive BUT NOT o-Additive)
Let © = (0,1)NQ. Define the collection R = {A C Q : A is finite or co-finite in Q},
where “co-finite” means that Q0 \ A is finite. Then R is a ring, since the family of
all finite or co-finite subsets of any countable set is closed under finite unions and
differences.
Define 1 : R — [0,00) by p(A) = 0, if A is finite; 1, if A is co-finite in €.
We verify that p is finitely additive.
If A, B € R are disjoint, then:
1. If both A and B are finite, AU B is finite, so u(AU B) = 0 = u(A) + u(B).
2. If one is finite and the other co-finite, their union is co-finite, so u(AU B) =1 =
1(A) + p(B).
3. It is impossible for two disjoint co-finite subsets to exist in €2, so no contradiction
arises.
Hence p is finitely additive.
Now enumerate Q = {q1, 2, ¢3, ...} and set A; = {¢;}.
Then each A; is finite, hence u(A;) = 0. Also note that Q = | |72, A;.
If 1 were o-additive, we would have p(2) = >27°, 1(4;) = 0. But by definition
w1(2) = 1. Therefore p FAILS to be o-additive, even though it is finitely additive.

Remark 3.5. A measure p with o-additivity on S could extend to a measure with o-
additivity on R(S) by defining p (|_|;”:1 Aj) 1= X0 u(Ay), with A; € St disjoint.

While o-additivity of p on R(S) can be derived from o-additivity on S, note that we
still have the weaker condition satisfied: semi-o-additivity, i.e. VA C U2 A;, A, A; €

R(S), m(A) < X52,u(A;).

3.2.3 QOwuter Lebesgue Measure

Setting: S - semi-ring with unity Q; u - o-additive measure on S; R(S) = A(S) - the

minimum algebra containing S.
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DEFINITION 3.11 (Outer Lebesgue Measure). Let p be a o-additive measure on a
semi-ring S with unity Q (so, S C 29).

For any F C €, define

p*(E) := inf {E;”;lu(Ej) B e S EC U?’;lEj} :

Then, p* is called the outer(exterior) Lebesgue measure of a set E induced by

i oon £

Remark 3.6. The outer measure is to define the measure on sets outside of S beased on
the pre-measure on S.

The outer measure p* of a set E always exists (may be infinitely many), since

L {X%2 u(A)) - Aj € S, A CUZ, Aj} at least contains ©;

2. Consider the real numbers in {332 ,1u(4;) : A; € S, A C U2, A;}, they have lower
bound 0. By the completeness of R, the infimum exists.

Warning: In general, one CANNOT claim that A(S) D A(£2). This is also the key
problem of out outer measure being not able to capture all the information in the algebra

generated by !

FExample 3.7. An invisible set under the outer measure

Let S = {[a,b) : a,b € Q, a < b} (S is indeed a semi-ring with unity), and define
the pre-measure ju([a,b)) = b — a. The outer measure p* on 2% is defined by p*(E) =
inf{} 77, n(A;) : A; € 5, ECUZ Ay}

Consider the set £ = QN [0,1). We will show that p*(E) = 1, while p*({q}) = 0 for
all ¢ € E. Hence, p*(|,cpla}) =1>0=>" pn*({g}), which demonstrates that p* is

not countably additive, even for disjoint sets.

Remark 3.7. This example shows that ©* cannot "see” the internal structure of sets outside
the algebra A(S) (But we are still in A4(2)!). Although E is a countable, measure-zero
set in the intuitive sense, any cover of E by rational half-open intervals must in fact cover
the entire interval [0, 1). Hence, the outer measure treats E as if it were as large as [0, 1).

A simple point of view: We know that there is quite possible to find a set E in
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A(Q) \ A(S). For such set, we cannot find a quite precise covering of it, so we can only

use the whole unity €2 as a part of our approximation.

Remark 3.8. Why do we call it an ”outer measure”?

The name comes from its construction principle: we measure a set from the outside.
Given a subset E C (), we generally cannot measure F directly, because E may be too
irregular or may not belong to the algebra A(S) where the original measure pu is defined.
Instead, we approximate E by sets A; € S that cover £ from the outside and take the
smallest possible total measure among all such coverings.

Formally, p*(E) = inf{>_; u(4;) : £ C U, 4;, A; € S}, which expresses the idea of
an outer approrimation. The measure does not come from the intrinsic structure of F,
but from the minimal ”"outer shell” built using measurable sets in S.

Philosophically, u* represents the best information we can obtain about the size of £
given our limited ”"vocabulary” S. It is an act of estimation under partial visibility: we
look at F through a coarse geometric lens and ask, "How small can the total measure of
the covering be if I only use shapes I can measure?”

Thus, it is called an outer measure because it always measures from the outside,

enclosing F within measurable sets rather than dissecting it from the inside.
Proposition 3.9. 1. p* always 3, and p*(A) > 0,VA C Q.

2. We can equivalently say in the definition of u* that A; are disjoint.
3. VA € A(S), m(A) = p*(4)

Proof. On one hand, by the semi-o-additivity, u(A) < 352, u(A4;) if U, A; D A.
= Take inf: p(A) < p(A);

On the other hand, take the trivial covering: A; = A,

H(A) = u(Ay) = (A L2, 0) > 7 (A4),

= u(A) = p(A). O

4. If By C By C Q, then p*(Ey) < p*(Ey) (since any covering of Esy is also a covering

Of El)
5. (Semi-o-additivity of p*)
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If EC U E;, E,E; CQ, then p*(E) < X22,u*(Ej). (this CANNOT be improved

even if B =152 E; — check our warning above!)

Proof. Ve > 0,

Vj, choose {4}, C S such that E; C U, A, and

Yol m(Ajr) < p*(E;) + 5 (thanks to the infimum property).
Thus, F C U2, E; C U2, URZ Ajg.

Thus, by the definition of ©* and semi-o-additivity of p,

pe(E) < X552, 572 pn(Aje) < X524 (1" (E5) + 55) = S5 (Ey) + e

Let ¢ — 07, we get the desired result. O]

Ezample 3.8. Let’s fix a bounded cell 2 in R?. Let S = {all cells C' C Q}.

Define u({p}) =0 for all p € Q. Consider E =QNQ™", E ={q1,¢,...}

= ' (E) < Z 0 ({g}) = 3520({g;}) = 0= p*(E) =0.

pr(Q\ E) < pr(Q) = p()

But by semi-o-additivity, u(Q2) = p*(Q) < p*(E) + p*(Q\ E) = p*(Q\ E).

= u*(Q\ E) = p(), which means that the outer measure CANNOT distinguish the
counterble but sparce set Q™.

With such outer measure, one can similarly get:
DEFINITION 3.12 (Inner Lebesgue Measure). Let u be a o-additive measure on a
semi-ring S with unity Q (so, S C 29).

Based on the outer measure p*, for any E C €, define

s (E) = p*(Q) — p*(Q\ E)

Then, . is called the inner(interior) Lebesgue measure of a set E induced by p

on ).

Proposition 3.10. VE C €, i, (E) < p*(E)

Proof. p.(E) = p*(Q) — p*(Q\ E) = p*(Q) — inf {Z2,(E)) : Ej € S, Q\ E C UX,Ej}
O
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3.2.4 Measurable Sets

DEFINITION 3.13 (Lebesgue Measurable Set). Let S be a semi-ring with unity €2,
and p be a o-additive measure on S. R(S) = A(S) — the minimum algebra containing
S, A(S) c 2%

A set E C Q is called (Lebesgue) measurable if and only if Ve > 0, 3B, € A(S)
such that p*(EAB.) = u*(E\ B:) + p*(B: \ E) < ¢, i.e. the set E can be approximated
by a set B. € A(S). We call such condition the approximation property (or being

measurable in the sense of Lebesgue).

Ezample 3.9. In this setting, let p*(F) = 0, then F is measurable: Choose B. = (), then
p(EAB:) = p*(E) <e.

THEOREM 3.11. A set E C Q is measurable if and only if p*(E) = pu.(E).

Proof. We prove being measurable in the sense of Lebesgue.

O

DEFINITION 3.14 (Lebesgue Measurable: Altanative Definition). Let S be a semi-ring
with unity €2, and p be a o-additive measure on S.

A set E C Q is called (Lebesgue) measurable if and only if VA C Q, p*(E) =
W (ENA) + p*(E\ A). Such condition is called to be satisfying the Carathéodory

criterion (or being measurable in the sense of Carathéodory).

THEOREM 3.12. The two definitions above are equivalent.

Proof. Let S be a semi-ring with unity €2, let o be a o-additive premeasure on S (we
emphasizes that this measure is the pre-measure), and let 1* be the outer measure obtained
from S by the usual covering construction.

M = {E CO:VX CQ (X)) = p (X N E) + (X E)} is the Carathéodory
o-algebra.
Auxiliary facts:

(1) For all X, E, B C Q, we have
u*(X N E) - 1*(X N B)| < w*(EAB),

P (X \ E) = p*(X \ B)| < p*(EAB),
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which follows from monotonicity and subadditivity of u* (e.g. X NE C (X NB)U
(EAB)).

(2) A(S) c M:

First check S C M by the additivity of pp on S and the definition of p*; since M is a
o-algebra, it contains the algebra A(S).
(Approximation = Carathéodory).Assume E C () satisfies: for every ¢ > 0 there is
B. € A(S) with p*(EAB;) < e.

Fix X C Q. Because B. € A(S) C M, p*(X) > pu* (X N B.) + p*(X \ B:).

Applying the first auxiliary fact with B = B, gives p*(X) > p* (X NE) + p* (X \
E)—-2u*(EAB,).

Letting € | 0 yields p*(X) > p*(X N E) 4+ p*(X \ E). The reverse inequality is the
subadditivity of p*, hence equality holds for all X, i.e. E € M.
(Carathéodory = Approximation).Assume £ € M. Let € > 0.

By the definition of u* choose a cover E' C (J,», Sk with Si € S such that 372, 11o(Sy) <
W (E)+e/3.

Write Uy := [, Sk € A(S) and U := U1 Sk

Then p*(U) < p*(E) +¢/3.

Since E is Carathéodory measurable and F C U, u*(U) = p*(E) + p*(U \ E)

= pU\E)<¢g/3.

By semi-o-additivity on the tail, choose N so large that pu*(U \ Uy) < £/3.

Hence p*(Uy \ E) < p*(U\E)+p*(U\Uy) < %, p*(E\Uy) < p*(U\Uy) <5,
and therefore p*(EAUN) < e.

With B, := Uy € A(S) we obtain the approximation property.

Combining the two implications proves that the two definitions above are equivalent.

]

Remark 3.9. Think about it: Can such definition address our problem in the last subsub-

section?

Answer: Yes, the Carathéodory criterion directly and completely addresses this prob-

lem!
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1. It provides a filter: The definition provides a precise condition to ”sieve” the ”mea-

surable” sets from the "non-measurable” ones. A set E is declared measurable if
and only if it splits every other set A in an additive way with respect to the outer
measure: p*(A) = p*(ANE)+ p*(A\ E)

2. It constructs the o-algebra: The Carathéodory Extension Theorem (which is based

on this definition) proves that the collection M of all sets E that satisfy this criterion
forms a o-algebra.

3. It guarantees additivity: The same theorem proves that the outer measure p*, when

restricted to this o-algebra M, becomes a countably additive measure.
In summary, Definition 5.46 is not just an arbitrary definition; it is the precise tool
needed to solve the extension problem. It successfully identifies the exact collection of
sets (M, the Lebesgue measurable sets) on which the outer measure p* behaves as a true,

countably additive measure.

Remark 3.10. The definition of a (Lebesgue) measurable set captures the idea of approz-
imability by “nice” sets. A set 2 C () is called measurable if it can be arbitrarily well
approximated by sets B. from the algebra A(S), in the sense that the “disagreement
region” between E and B., namely the symmetric difference EA B,, has arbitrarily small
outer measure: p*(EAB,) < ¢ for all € > 0.

Intuitively, this means that even if E itself may be irregular or complicated, we can
always find a clean, measurable set B. that almost coincides with E up to an arbitrarily
small “error area.” Measurable sets are precisely those whose geometry can be faithfully
captured through such approximations.

In the above example, if 4*(F) = 0, then E is trivially measurable. Indeed, we can
take B. = (), so that u*(EAB.) = p*(F) = 0 < e. This illustrates that every measure-zero
set is measurable: such sets are geometrically “invisible” to the outer measure, since they

can be ignored without affecting any measured quantity.

3.2.5 Lebesgue Extension of a o-Additive Measure
Setting:
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(Q, S, ) — Q - set, S - semi-ring with unity €, u - o-additive measure on S
— directly extend to (€2, .A(S), 1), p: the pre-measure.

— introduce p* on the whole 2%,

— (Q,M(Q), u), with M(2): collection of all measurable sets in 2.
'measurable’: VA € M(Q), Ve > 0, 3B. € A(S) such that u*(AAB,) < e.

Remark 3.11. To better distinguish p and p*, for those in the original A(S), we use p.
Otherwise, we use the notation p*. Thus, * emphases that the measure on the set is

defined by extanding .

THEOREM 3.13 (Carathéodory’s Extension Theorem). In the above setting (with
pre-measure p on A(S)), let M(S) be the collection of all measurable sets and we set
w(A) == p*(A),VA € M(S). Then,

1. M(S) is a o-algebra.

(M(S) extends the original algebra A(S).)
2. p* is o-additive on M(S).

(M extends the original measure p on A(S).)

Proof. First of all, we know that Q € M(Q).
Step I: prove if A € M(£2), then Q\ A € M(9Q).
Fix e > 0, 3B, € A(S) such that p*(AAB.) < e.
Consider Q\ B. € A. Then, note (Q2\ A)A(Q\ B.) = AAB..
Thus, p*((Q\ AAQ\ B)) <e = Q\ Ae M(Q).
Step IL: prove VA, Ay, ..., A, € M(Q2), we have |J;_; 4; € M(Q).
Only need to prove for n = 2 (others by induction).
Ay, Ay € M(Q), Ve > 0.3B1, By € A: " (A1ABy) < e, u* (A2 ABs) < €.
A= A;|J Ay, we will approximate by B = By | Bs.
Since (A; JA2)A(B1UBs) C (A1 B1)A (A2 Ba),
P (AAB) < pu*(A1ABy) 4+ (A2 ABs) < 2¢
= A |JA € M(Q).
Thus, the first statement is proved.

Corollary 3.14. M(Q) is an algebra.

©©@OSO 50 o


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 3 Measure

Proof. e contains ).
e closed under taking union: proved above.
e closed under intersection:

e closed under symmetric difference: AAB =

Step III: prove p* is finitely additive on M(£2).

So, VA1, Ag, ..., A, € M(Q), we need to show pu(A;UAsU---UA,) = u(Ar)+p(As) +
-+ u(A4,).

Similarly, only need to show for n = 2.

Take Ay, Ay € M(Q), A1 N Ay = 0.

Ve > 0,3By, By € A(S) : p*(A1ABy) < e, u*(A3ABs) < €.

Since By () By C (A1ABy) J(A2ABs), we have u*

Step IV: prove u* is a o-algebra on M(£2).

Replace by disjoint union: let A} = Ay, Ay = Ay \ Ay, A = A3\ (A1 U A2), .. ..

Then, we have A = | |°, Al

We have

Step V: prove p* is g-additive on M(S2).

WTS: VA, Ag, ..., A, € M(Q), we have p*(Ay U Ay U---UA,) = pu*(Ay) + p*(A42) +

w4t (An).
]

Conclusion: We end up with a triple (2, M(€2),u) — (set: Q, o-algebra: M(Q),

o-additive measure on M(§2): p).

3.2.6 Measure Space

DEFINITION 3.15 (Measure Space). Such a triple (2,4, 1) (A is some o-algebra on

the set ) is called a measure space (spcae with measure).
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DEFINITION 3.16 (Complete Measure). A complete measure (or, more precisely,
a complete measure space) is a measure space in which every subset of every null set is
measurable (thus having measure zero).

More formally, if (€2, A, i) is a measure space, then it’s called complete if and only if
ACEcA u(E)=0,= Aec A (and hence u(A) =0).

Ezxample 3.10. For (Q, M(Q2), 1), we always have completeness:

p(A)=0,EC A=0<pu*(F)<u(A)=0=E e M(Q).

But this FAILS in general. For example, 3 measure 0 non-Borel sets, which is contained
in some measure (0 Borel sets, so Lebesgue measure p1 on R”, restricted to Borel o-algebra
is incomplete.

However, any incomplete measure space can extend its measure to attain a complete
measure space. One just need to follow the Lebesgue extension of a general measure space
(92, A, ).

THEOREM 3.15. For any measure space (£, A, i), the following holds:

1. VAL C Ay C A3 C ... with A; € A, p(U:2, Ai) = zliglo w(A;).

2. IfA1 DAy D A3 D ..., A; € A, then ili%u(Ai) = p((Niey Ai)-

Both 1 and 2 are called the continuity of the measure.
Proof. O]

Question: What about co-valued measures?

Consider a space with measure (€2, A, i), where 1 is a R-valued measure. The definition
of finite additivity and o-additivity is repeated word-by-word:

Finite additivity:

L p(A) =2 0;

2. Uiy 4j) = Zj_yp(4;);

o-additivity:

L. p(A) = 0;

2. (U5, 4)) = B2 0(4);

Then we easily deduce several similar properties.
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Proposition 3.16. 1. p(0) =0.
2. If AC B, then u(A) < u(B).
8. If AC UL, Ay, then p(Uj_; Aj) < 552, 0(4;).
DEFINITION 3.17. A measure space with co-valued measure is called o-finite if
Q=117 Q€ A, () < o0
Then VA C A, ju(A) = S5, u(AN ) = S, (A)
So, essentially, u is obtained from {1}, with each py, defined on A N 25%.
Example 3.11. R™ = |—|i1,i2 ..... i linyin + 1) X figyig + 1) X oo X [in, i +1),d1, ..., i € Z.
Remark 3.12. For Q@ = | J;Z, Q% = |72, O

Mesures agree:
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3.3 Lebesgue Measure in R”

Goal: Understand M(R").
Main fact: B(R") C M(R") ¢ 28",

3.3.1 Construction of a Non-Measurable Set(!)

Proposition 3.17. 1. (Shift-invariance) If E, == {x + o,z € E,a € R™: fized}, then
E, e R" < E C M(R); and we also have u(E, = pu(E)).
It holds since it holds for cells.
2. B(R") ¢ M(R")
Proposition 3.18. (Vitali Set)

3 a non-measurable subset A C [0,1), namely the Vitali Set'.

Proof. On [0,1), consider the following equivalent relation:

Proposition 3.19. VA C R with u(A) > 0, A contains some B C A s.t. B ¢ M(R).
Proof. O

Remark 3.13. The same holds in R": VA C R™ with u(A) > 0, A contains some B C A
s.t. B ¢ M(R").

3.3.2 Standard and General Cantor Set

We build a sequence of sets:
Ey=[0,1]
Ey=E\©L, L= (%, %)
Ey=E\I, Lb=1L1UhLy L= (%, %), Ly = (g, 3).
By =Ex\ I3, I3 = Ly U Lo U LzU oy, Iog = (2%, 2%), Iy = (%, 2%), I3 = (é—?, 3—8),

La=(322).

Vitali Set is the first well-contructed, clearly-proved Lebesgue non-measurable set on R in history.
The work is done by Giuseppe Vitali in 1905.
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We get a sequence of sets {Ey}, VEy is closed. = Cy := (=, Ex, Cp is closed and

bounded = Cj is compact.

DEFINITION 3.18 (Standard Cantor Set). Such set Cy is called a (standard) Cantor

set.

Figure 5: Cantor Set: first few steps of construction

Proposition 3.20. 1. Cj is compact and Cy C [0,1];
2. Cy is nowhere dense;

3. 1(Co) =0

Proof. O
4. Cy is continual.

Proof. O]

DEFINITION 3.19 (Fat Cantor Set). A fat Cantor set! is an example of a set of
points on the real line that is nowhere dense (in particular it contains no intervals), yet
has positive measure.

It is a generalization of the standard Cantor set Cy, which has measure zero.

Ezample 3.12. Consider A be the subset of points in [0, 1] the decimal expansion of which
doesn’t contain the digit 5. Approximate A by “first n digits” sets.
Foreachn € Nlet A, = {x € [0, 1] : among the first n decimal digits of x no digit equals 5}.
Then Ay D Ay D -+ and A=()", 4,

Tt is also sometimes called Smith—Volterra—Cantor set (SVC) or e-Cantor set.
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Each A, is the disjoint union of 9" intervals of length 10~ (one for each choice of n
digits from {0,1,2,3,4,6,7,8,9}), hence m(A,) = 9" - 10" = (%) .
By continuity of measure, m(A) = m(ﬂff:l An) = lim m(A4,) = lim (%)n =0.

n—oo n—oo

So A is measurable and m(A) = 0.

3.3.83 Cantor Staircase Function

DEFINITION 3.20.

0.5

Figure 6: Cantor Staircase Function

Lemma 3.21. Let f: Q — QS C 2%, then A(f~' % (59)) = f(A(S")).
Proof. m

Corollary 3.22. (Preimage of Borel set is Borel.)

If f: [a,b] — [c,d] is continuous, then f~'(E') is Borel, provided E' C [c,d)] is Borel.
Proof. Follows from f~1(G) is open if G is open. O

Now, consider ¢(z) :=x + K(z), ¢ : [0,1] — [0,2], ¢ is strictly increasing.

3.3.4 Construction of a Non-Borel Measurable Set(!)
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Proposition 3.23. Let A C R" be a Lebesgue mesurable set, i.e. A € M(R").
Then, Y6 > 0, 3 a closed Fs and an open Gs satisfying Fs C A C Gs, s.t. u(A\Fs) <9
and u(Gs\ A) < 9.

Proof. m

Corollary 3.24. VA € M(R"™), A can be decomposed as:
1. A= F||E, where F is Borel and E is measure 0;
2. A= G\ E, where G is Borel and E C G is measure 0.

Proof. 1. If u(A) < oo:
Take F := -, ka
Then F' C A and Vk, u(F) > ;JJ(FQ%) > pu(A) — 5.
= u(F) = p(F) = p(A)
= w(F) = p(A), p(A\ F) = 0.
Now, if f1(A) = oo, then we can write A = | |}, Ay with all p(Ag) < oco.
Then, VA, = Fy | | Ex.
Just take F = | |2, Fj, and E = | |}~ Ej.

2. Proof is analogous to 1. O]

Remark 3.14. Note that the actual F' here is an at most countable union of closed sets.

And G here is an at most countable intersection of open sets.

Remark 3.15. Reminder: A(f7!(S)) = f~'(A(S)) for continuous f = f~'(F) is Borel
it £ is Borel.
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3.4 Completeness and Regularity of Measures

In previous sections, we touched upon the concept of completeness and approximation.

Here we formalize these notions, which are crucial for the “good behavior” of a measure.

3.4.1 Completion of a Measure Space

We have defined a complete measure space as one where subsets of null sets are measurable.

If a space is not complete, we can always “complete” it.

THEOREM 3.25 (Completion Theorem). Let (2, A, 1) be a measure space. Define A
as the collection of sets E C Q of the form E = AUN, where A € A and N is a subset
of some M € A with (M) = 0. Define i(FE) = u(A). Then:

1. A is a o-algebra.

2. Ti is well-defined and is a measure on A.

3. T extends u, i.e., i(A) = pu(A) for all A € A.

4. (Q, A7) is a complete measure space, called the completion of (Q, A, ).

—~

Proof. 1. o-algebra: Clearly ) € A. Let E= AUN € A with N C M, u(M) = 0. Then
E¢ = (AUN)¢ = A°NN°. Notice A°NM° C E° C A°. So E° = (A°“NM°)U(E°\ (A°NME)).
The second part is a subset of M, hence a null subset. The first part is in A. Thus

E°¢ € A. Countable union is straightforward.

2. Well-definedness: Suppose A; U Ny = Ay U Ny, with N; C M;, u(M;) = 0. We need
to show u(Ay) = pu(Ag). Ay C AU Ny C AgU My = p(Ar) < p(Ag) + (M) = p(Az).
Symmetrically, 1(As2) < p(A;). Thus @ is independent of representation.

3. & 4. Follow directly from definitions. Completeness holds because if F ¢ E € A
and 7i(E) = 0, then E = AU N where u(A) = 0. F is a subset of a null set, hence F € A

by construction. O]
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3.4.2 Regularity of Measures

Regularity connects measure theory with topology. We essentially ask: can measurable

sets be approximated by open or compact sets?

DEFINITION 3.21 (Outer Regular Measure). Let X be a metric space (or topological
space) and 4 a measure on the Borel g-algebra B(X).

p is outer regular on E if u(E) = inf{u(U) : E C U,U is open}.
DEFINITION 3.22 (Inner Regular Measure). Let X be a metric space (or topological
space) and p a measure on the Borel o-algebra B(X).

p is inner regular on F if u(E) = sup{u(K) : K C E, K is compact}.
DEFINITION 3.23 (Regular Measure). Let X be a metric space (or topological space)
and p a measure on the Borel o-algebra B(X).

p is regular if it is both outer and inner regular for all sets in B(X).

THEOREM 3.26 (Regularity of Lebesgue Measure). The Lebesque measure p on R™ is
reqular. Specifically, for any Lebesgue measurable set E:

1. (Outer Regularity) u(E) = inf{u(U) : E C U,U open}.

2. (Inner Regularity) u(E) = sup{u(K) : K C E, K compact}.

Proof. 1. Outer Regularity: This follows directly from the definition of the outer
measure p* (covering by cells) and the fact that cells can be slightly expanded to be open.
For € > 0, cover E by {I;} such that > |I;| < u(E) + €/2. Expand each I; to an open U;
such that p(U;) < u(I;) + €/271. Then U = UU;, is open and satisfies the condition.

2. Inner Regularity: First, assume F is bounded. By Prop 5.86, for ¢ > 0, there
exists a closed set F' C E such that u(E \ F) < e. Since E is bounded, F' is bounded and
closed, hence compact (Heine-Borel). Thus u(F) > pu(FE) — €.

If F is unbounded, define Ey = E' N B (0) (intersection with ball of radius k). Then
E} is bounded and u(Ey) — u(E). For each Ej, we can find compact Kj C Ej close in

measure. By choosing k£ large enough and then K}, we obtain the result. O
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3.5 Dynkin Classes

In the extension of measures (Carathéodory’s Theorem), we constructed a measure on a
o-algebra generated by a semi-ring. A natural question arises: Is this extension unique?
To answer this, we introduce the concept of Dynkin classes (also known as A-systems) and

m-systems. This is a powerful tool often referred to as the m-A Theorem.

3.5.1 mw-systems and \-systems

DEFINITION 3.24 (m-system). A collection of sets P C 29 is called a w-system if it

is closed under finite intersection:
A BeP — ANBeP.

FExample 3.13. The collection of all semi-open cells in R" is a m-system. The collection of

all open sets is a 7-system.

DEFINITION 3.25 (\-system / Dynkin Class). A collection of sets D C 29 is called a
A-system (or a Dynkin class) if:

1. QeD.

2. If A,Be€Dand A C B, then B\ A € D (Closed under proper difference).

3. If A, e Dand A; C Ay C ..., then |J~ | A, € D (Closed under monotone limits).

Remark 3.16. It is easy to check that a o-algebra is always a A-system and a m-system.

Conversely, if a system is both a m-system and a A-system, it is a o-algebra.

Proof. Let C be m-system + A-system. 1. € C (A-prop). 2. Closed under complement:
A= Q\ A. Since A C Q, A° € C (A-prop). 3. Closed under union: AU B = (A°N B°)".
Since closed under complement and intersection (m-prop), it is closed under finite union.
4. Closed under countable union: Let A, € C. Let B, = J;_, Ay € C. B, C B,41. By
A-prop (3), UB. =UJ A, €C. ]
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3.5.2 x-)\ Theorem

THEOREM 3.27 (7-A Theorem, Dynkin). If P is a w-system and D is a A-system such
that P C D, then
o(P) C D,

where o(P) is the smallest o-algebra generated by P.

Proof. Let D(P) be the smallest A-system containing P (intersection of all such A-systems).
Clearly D(P) C D. It suffices to show that D(P) is a m-system. (Because if so, by the
Remark above, D(P) is a o-algebra containing P, hence o(P) C D(P) C D).
Step 1: Let A € D(P). Define Dy = {B € D(P): AN B € D(P)}. We show D, is a
A-system.
e ONA=AecD(P) = QeDy.
e Let By C Byin Dy. Then AN(B2\ By) = (ANBy)\(ANBy). Since ANB; C AN DBy
are in D(P) and D(P) is a A-system, the difference is in D(P). So By \ By € Da.
e Let B, T Bin Dy. ANB = J(AN B,). By monotone limit property of D(P),
AN B eD(P).
Step 2: Let A € P. Since P is a m-system, for any B € P, AN B € P C D(P). Thus
P C Dy4. Since Dy is a A-system, we have D(P) C D4. This implies: VA € P,VB €
D(P), AN B € D(P).
Step 3: Now let B € D(P) be arbitrary (not just in P). From Step 2, we know that
for any A € P, AN B € D(P). This means A € Dg. So P C Dp. Again, since Dp is
a A-system, D(P) C Dg. This implies: VB € D(P),VC € D(P),BNC € D(P). Thus

D(P) is closed under intersection (a m-system). [ O

3.5.3 Application: Uniqueness of Measure Extension

THEOREM 3.28 (Uniqueness of Measure). Let py and ps be two measures on (€2, o(P)),
where P is a m-system. If:

1. 1 (A) = po(A) for all A € P,

2. A=, | E, with E, € P and j11(E,) = pa(E,) < 0o for all n (o-finite condition),
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Then py = pg on o(P).

Proof. Let’s prove for the finite case (u(€2) < oo) first. Let £L = {E € o(P) : i1 (E) =

u(E)}.
e () € L by assumption.
e f AC Barein L, i1(B\ A) = p1(B) — p11(A) = pa(B) — p2(A) = (B \ A). So
B\ AelL.
o If A, T A arein L, by continuity of measure, 1;(A) = lim u;(A,,). Thus A € L.
So L is a A-system containing P. By the m-A Theorem, o(P) C L. The o-finite case

follows by restricting measures to F, and taking limits. O]

Remark 3.17. This theorem is fundamental. It tells us that the Lebesgue measure we

constructed is the unique measure on B(R") that assigns the volume [(I) to every cell 1.
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4 Measurable Function
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4.1 What Kind of Functions are Measurable(?)

DEFINITION 4.1 (Measurable Function). Let (€,.4, 1) be a measure space with a
complete measure. Then a function f : {2 — R is called measurable if and only if V

Borel set A C R, it holds f~1(A) € M(Q).
Remark 4.1.

Remark 4.2.
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4.2 Properties of Measurable Functions

Proposition 4.1. 1. If f is measurable, then af + b is measurable for a,b € R;

Define E.:={x € Q:af(x)+b<c}

2. If f, g are measurable, then the set {x : f(x) < g(z)} is measurable.
Proof. O

3. Combining 1 and 2, one can get:

= f £ g is measurable.

4. If p € C(R) and f is measurable, then ¢ o f is measurable.
Proof. m

Remark 4.3.

5. If f, g are measurable, then f - g is measurable.

Proof. O]
6. If f, g are measurable and g(x) # 0,Vx € Q, then 5 18 measurable.

Proof. f+g=1f- gl; with é being measurable by taking ¢(x) = % in 4. H

Remark 4.4. Conclusion: Arithmetric operations with measurable functions give measur-

able functions.
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4.3 Almost Everywhere Properties

DEFINITION 4.2 (Almost Everywhere). Let (£2,.4, 1) be a measure space with a
complete measure.

Then we say that a property of some points {z € Q} holds almost everywhere
(a.e.) if and only if the property holds that Vx € Q \ E, where p(FE) = 0.

We say that a property of some points {z € 2} holds almost everywhere (a.e.) on

A, where A € M(Q), if and only if the property holds for Vo € A\ E, where u(E) = 0.

1a M Qv
Example 4.1. 1. Dirichlet function: D(x) =

0, z€][0,1]\Q.
One can esaily check that

2. One can consider convergence a.e.: f,(z) — f(z) a.e.
3. One can consider funtions defined a.e.:

4. Finally,instead of actual functions, we may consider their equivalent classes:

Lemma 4.2. If f is measurable and u(A) =0,

fz), = €A,
then if we define: g(x) = , g 18 still measurable.

0, x ¢ A

Proof. O

THEOREM 4.3. Let {f,}°2, be a sequence of measurable fucntions on (2, A, u) and

ful2) ©5 f(x). Then f(x) is also measurable.
Proof. O

Corollary 4.4. Let {f.(z)} be a sequence of measurable functions. If f,(x) is bounded
from above ¥Yn for a.e. x € S, then

1. sup f,(x) is measurable;

2. lirrln sup fn(z) s measurable;

If, ;;Ljrwise, fu(z) is bounded from below ¥n for a.e. x € Q), then

1. inf f,(x) is measurable;

2. liminf f,,(x) is measurable.
n—oo
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Proof. Consider g\(x) := fi(x), go() := max{fi(x), fo(x)} = HAZLELELELLE,
g3(x) = max{fi(z), fo(x), fs(x)} = max{gs(x), f3(x)}, ..., which are all measurable
by properties in the last subsubsection.

Then, sup fulz) = nh_)rgo gn(z) is measurable.

Recall: limsup a,(z) = sup{limits of convergent subsequences} = lim (sup a,(z)).

n—oo k—o0 n>k
Then, limsup f,(z) = lim (sup f,(z)) is measurable.
n—o00 =0 n>k
Analogously, inf f,,(x) = —sup(—f,(x)) is measurable; lim inf f,(z) = — lim sup(— f,,(z))
n n n—00 n—+00
is measurable. ]
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4.4 Egorov’s Theorem

THEOREM 4.5 (Egorov’s Theorem). Let (2, A, 1) be a space with a finite complete
measure, and {f,} is a sequence of measurable functions with f, *5 f.

O\E
Then, ¥6 > 0, 3 a set Es C Q s.t. u(Es) < and f, :;6 f-

Proof. Fix 6 > 0. Consider the divergence set F (u(E) = 0 by our assumption):

E= Ukzl O

Remark 4.5. Intuition here: on a set with small measure, convergence may be bad; but
on the rest part with large measure, convergence is uniform.

Remark 4.6. Ths Egorov’s Theorem may fail if 4(Q) = oc.

Counter example 1: Take 2 = R with Lebesgue measure, f,(z) = 2.

Then, f,(z) 5 0 on the whole real line, but VE; with finite measure, f, 7 0 on
R\ Ejs.

Counter example 2: Take 2 = R with Lebesgue measure, f,,(2) = X[nn+1]().

Then, f,(z) 5 0 on the whole real line, but VE; with finite measure, f, 72 0 on
R\ Ej.
Remark 4.7. In Egorov’s Theorem, one CANNOT take Fs = 0.

Counter example: Take Q2 = [0, 1] with Lebesgue measure, f,(z) = 2™.

Then, f,(z) %5 0 for z € [0,1) and f(1) = 1.

Proposition 4.6. Let E C R be a closed set, f € C(E). Then 3g € C(R), s.t. g|lg = f|E-

Proof. Since E is closed, R\ E is open. So, we can write R\ E = | |7, I, where
Ik = (&k, bk)
On each [, we define g as the linear function connecting (ay, f(ax)) and (b, f(bx)).

Explicitly, g(x) = f(ax) + %(z —ay),x € I.
If there are some intervals which contain oo or —oo, we just extend ¢ as a constant
function on them.

So, such defined g is continuous on R and g|g = f|g. O

©©@O®SO 68 o


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 4  Measurable Function

Remark 4.8. What'’s good about such linear link / extension?
Linear functions not only preserves continuity, but also linear control, which may

provide us with some sort of convenience in some problems.

Remark 4.9. This also works for £ C R", which requires a more complicated proof.
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4.5 Lusin’s Theorem

THEOREM 4.7 (Lusin’s Theorem). Let f be a Lebesque measurable function on [a,b].

Then Y6 > 0, 3E;5 s.t. u(Es) < § and 3 a continuous function g € C([a,b]), s.t.

f‘[a,b}\E = g’[mb]\E.

Proof. O

Remark 4.10. [a,b] can be replaced by any interval I C R.

Remark 4.11. We could say instead of f|i, 4\ = 9ljap)\ e that f is continuous on [a,b] \ E

for an open set F (as follows from the proof).

Remark 4.12. The Lusin’s Theorem also holds in R™ analogously: for f - measurable on

an open G C R".

Remark 4.13. We still CANNOT take E with u(E) = 0.

1 2 e(0,1];

x’

Counter Example: f(z) =

0, =0
THEOREM 4.8 (Inverse Lusin’s Theorem). Let f be a function on |a,b] with the Lusin

property (Vo >0, IE5 : u(Es) < 6 and gs € C([a,b]) : fliapne = 9lwn\E)-
Then f is Lebesgue measurable.

So, f on [a,b] is Lebesgue measurable < f has the Lusin property.
Proof. O]

We established, in particular, that a measurable function on an interval is an a.e. limit

of continuous functions.
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4.6 Convergence in Measure

DEFINITION 4.3 (Convergence in Measure). Let f, be a sequence of measurable
functions on a measure space (€2, A, u) with a complete measure. We say that f,, converges

to f in measure if Vo > 0,

T pi({r € Q2 |fy(a) — f(@)] = 0)) = 0.

In the theory of probability, this is also called convergence in probability.

Notation: X, 2y X where X,, X are all random variables.

THEOREM 4.9. Let (Q, A, 1) be a space with a finite complete measure. f, “5 f where
fn 1s measurable.

Then f, — f in measure.

Proof. f, *5 f on Q. Fix § > 0, then fix ¢ > 0.
O\E
By Egorov’s Theorem, 3E : u(E) < ¢ and f, = f. Then, 3N € N,Vn > N, |f.(x) —

f@)<don Q\ E = {}

Remark 4.14.

THEOREM 4.10 (Riesz Theorem). Let (Q,A, ) be a space with a finite complete
measure. f, — f in measure.

Then,3f,, =5 f(k — o) on .

Proof. Fix k € N, then pu({|f, — f| > +}) "=70.
= Iy, p({[ fu (@) = f(@)] > 3}) < -
Denote By := {|f,,(z) — f(z)| > £}, then u(Ey) < 5.
Now, set E := (y_; Upsn Br- Denote Ay := sy Er-
Then, u(Ay) < Spsnp(Er) < Epsnge =277V,
But 4; D A, D ... and p(A;) < 3 (in particular, p(4;) < 0o)

= we can apply the continuity of u:
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w(E) = lim p(Ax) =0.
N—o00
We can apply the continuity of p: p((\y—; Ureny Ak) =0
We claim then f,, — fae Ve e Q\FE
Indeed, plimsup £) = u((oy U wllf — £12 1)) =0.
If z € Q\ E, then 3N: for k> N, it holds |f,, (z) — f(z)| < 1 in partic.
fo.(x) = f(x), as desired. O

Ezample 4.2. Q =[0,1), now let’s build a sequence of intervals.

AL =1[0,1),
Ay =1[0,1/2), As =[1/2,1)

As=1[0,1/3), As = [1/3,2/3), Ag = [2/3,1),
Az =1[0,1/4),

1, z€A,
Let fo(z) =14, (2) =
0, =¢ A,
fi fo /3 fa
ete.
N x x x
1 ™ I P

Then, for example, for x € [0, 1),  will fall into infinitely many of A, = f.(z) =1
and = € A,, for infinitely many of m, so f,,(z) =0
Thus, Alim, . fn(z) Vo € ]0,1).

But 1[07%]@) "22°0 ae. and L 1y is a subset of fp.
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5 Lebesgue Integration with a Finite Com-

plete Measure

The Riemann integral relies on a geometric partitioning of the domain, which fails
when the function exhibits rapid local oscillation (making approximation by vertical
rectangles impossible). In contrast, the Lebesgue integral adopts a statistical perspective
by partitioning the range. It aggregates the measure of sets where the function takes

specific values, thereby handling such irregularities robustly.

In what follows: (€2, .4, 1) — a space with finite complete measure.
(Q: set, A: o-algebra on 2, u: o-additive measure on A.)

Define the extended real number set R = RU{—oc0, +00} and we have the axiom: 0-occ = 0.
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5.1 Simple Function

DEFINITION 5.1 (Simple Function). A function f on Q is simple, if f(€2) is at most
countable, i.e. f(Q) = {¢;}32,.
Lemma 5.1. A simple f is measurable <= all the Tlevel sets' " E; = {x € Q: F(z) = ¢;}

are measurable.

THEOREM 5.2. f is measurable on Q) <= f can be expressed as a uniform convergence
Q
of a sequence of simple measurable functions on €2, i.e. 3f, = f where all f,, are simple

and measurable.

Proof. 1. Suppose [ can be expressed as an uniformly convergence of some sequence of

simple measurable functions, then f is clearly measurable. (Recall that we have a theorem

saying that the a.e. convergence of a sequence of mesurable functions is still measurable.)
2. Suppose f is measurable on )

Fixn € N, then R = | |[=° _[&L k).

k=—o00

Let BF = f~1([&L L)), VEF Vo € EF, we set f,(z) = &1,

27L ) 27L

Then, Q = | [[>°_ E¥, fulge = k2L fa is well-defined on €.

Since f is measurable, all EF are measurable = f,, is measurable.

Clearly, | fu(z) = f(@)] < & = fu = F. s

Remark 5.1. Here, clearly it could be possible that f takes its value as co on some
measure-zero set, which requires us to deal with the construction more carefully. For this
specific construction, we define Vo € E, f,(x) = f(x). Such construction has no problem

since F, has measure zero and still |f,(z) — f(2)] < 5.

Remark 5.2. As seen from the proof, we may, in addition:

1. make f,, = f where all f,, are non-decreasing in n, just as in the proof;

Proof. At step n, f, approximates f using intervals of size 1/2".
At step n + 1, we split those intervals in half to get better precision. Because we are

taking the "floor” (the lower bound of the interval £:1), refining the grid moves the

We also call them canonical sets because they are the canonical objectives we analyzes here.
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approximation up or keeps it the same; it never moves it down. O

2. make f, = f where all f,, are non-increasing in n, by setting f,(x) = %;

3. f > 0= choose f, >0, just as in the proof (since f >0, E¥ =0, Vk < 0);
4. f is bounded, then choose { f,} which are finitely valued (need a bit modifying of

the proof).

DEFINITION 5.2 (Lebesgue Integrable Simple Function). Let f be a measurable simple
function. Then we say that f is Lebesgue integrable on 2 if the series Zj’;l cip(Ej) is
absolutely convergent.

Here, f(Q) = {¢;}321, Ej =~ ({¢;}).

If the condition is satisfied, we call [, fdu := 3", ¢;u(E;) the Lebesgue integration

of f over 2.

Remark 5.3. It's convenient to write f(z) =77, ¢;lg,.
Remark 5.4. Analogously, we can define the integrability of f on A € A and [, fdu
VA e A

(Switch here to A" := AN A, 1/ (X) = n(XNA).)

Remark 5.5. In this definition, one can actually consider any partition Q =| |; A;, A; €
A, fla; = a; €R, [, fdp =377 a;u(A;).

In other words, one can easily check that our definition for Lebesgue integrable simple
functions is well-defined in the sense that we only need to make sure on every F; f only
takes one constant value c; without requring all ¢; here to be precisely distinct, which is
presented in the next lemma.

So, thanks to the well-defineness of our definition for Lebesgue integration for simple
functions, we can simply always choose {£;} as our partition for convenience, which is

the 'maximum’ partition.

Lemma 5.3. Let A = |J, By, where B; N B; = @ when i # j, and assume that the
function [ takes a constant value by on each set By (We don’t require them to be all
distinct!). Then [, fdp =", bpp(By), and f is Lebesgue integrable on A if and only if

the series Yy, brp(By) is absolutely convergent.
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Proof. 1t is easy to see that each canonical set E; = {z € A: f(z) = ¢;} is the union of
those sets By, satisfying b, = c;.

Therefore, > cjp(E)) = 305 ¢ D pipyme, #(Br) = 24 brit(Br).

Since the measure is non-negative, we have >, |c;[u(Ej) = >, ¢ Yoy, —c, #(Br) =
>k bk (Bh)-

That is, the series > ¢;u(E;) and ) byu(By) either both converge absolutely or both

diverge. The lemma is proved. ]

Proposition 5.4. 1. Linearity: f,g: simple, Lebesque integrable = of + Bg: also

Lebesgue integrable Yo, f € R and [,(af + Bg)du = o [, fdu+ B [, gdp.

Proof. f(A) ={c;}521,9(A) ={d;};2,. E;:= f'(¢;), Gy = g (dy).

= af + B9l ne, = ac; + Bdr (Note that {E; ()G} itself makes a partition of
the whole space (2.)

= we shall consider, for the integrability, the series

2 lac; + Bd;)u(E; () Gr)

= {linearity of series} = a ., c;u(E; (N Gy) + B, w(E; (1 Gy) = {o-additivity}
= a) . ciu(Ej) + By dipu(Gy) where the last two series are absolutely convergent.
Thus, the original series is absolutely convergent.

Also, we have [, (af + Bg)dp = o [, fdu+ B [, gdp by definition. O

2. If f is a bounded simple function: |f| < C for some C € Rt = [ is Lebesgue

integrable and | [, fdu| < Cu(A).

Proof. S |e(Ey)| < € X u(E;) = Cu(A)
= > c;u(E;) is absolutely convergent. O
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5.2 Lebesgue Integral with a Finite Complete Mea-

sure

The Lebesgue integral is less concerned with the function’s behavior at individual points;

rather, it focuses on the measure of the sets where the function assumes specific values.

DEFINITION 5.3 (Lebesgue Integrable Function). Let f be a general measurable
function on (2, A, u).

Then f is called Lebesgue integrable on A C A if 3 a sequence of simple, measurable,
Lebesgue integrable (on A) functions { f,} s.t. f, é} f.

Notation: We write f € L1(A) if f is Lebesgue integrable on A.!

Further, [, fdu := T}Lrgo [ 4 [adp in the case of integrability is the Lebesgue integra-
tion of f on A.

Proposition 5.5. 1. The limit lim fA fndp always exists, if f is Lebesque integrable
n—o0

A
and fn = f;

A
Proof. f, = f = Ve >0,aN € N;Vm,n > N,|f, — fm| < e on A.
= | [, fadp— [, fmdp| = {linearity of Lebesgue integration of Lebesgue integrable
simple function} = | [,(fn — fm)dp| < ep(A). (Thanks to the fact that u(A) <

00.) O
2. The value lim fA fndp doesn’t depend on the sequence { fn};
n—oo

Proof. Assume, to the contrary, that L := lim, o [, fn dpand L* := lim,, o, [, fi dp
but L # L*.

Construct a new sequence {g,} by interleaving the two sequences:

gon—1 ‘= fnaan = f;:vn = 17 27 s

A A A
Since f, = f and f* = f, the interleaved sequence g, also satisfies g,, = f (uniform
convergence on A is preserved under interleaving). Hence the limit lim,, f 4 9ndp

exists.

Here, £! means L£!'-space. In general, for 1 < p < oo, LP-space is defined as the space of Lebesgue
measurable functions for which the p-th power of the absolute value is Lebesgue integrable.
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However, the subsequence of odd indices of { [, g, du} is exactly {[, f, du} and
therefore has limit L, while the subsequence of even indices is { [, f: du} and has
limit L*. This contradicts L # L*. Therefore L = L*, and the limit is independent

of the chosen approximating sequence. O

3. For simple f, the definition is equivalent the previous definition of ’Lebesque inte-

grable’ for simple functios.
We now grab the theorem below without proving it.

THEOREM 5.6 (Cauthy Theorem on Permutations). Let ) a, be an absolutly con-
vergent number series.
Then ¥ permutation § : N <> N, >~ a5y is also an absolutely convergent series which

converges to the same sum value.

You may be more familiar with its appearance as the Riemann Rearrangement Theorom:
"If 3> | a, converges absolutely, then every rearrangement of » " °  a, converges, and

they all converge to the same sum.”

Corollary 5.7. Let {a1,}52, absolutely converge to by, {as,}5°, absolutely converge to

by, .... If 377 b; absolutely converges to b € R, then Zij a;;j absolutely converges to b.
Proposition 5.8. 1. Let f be a Lebesgue integrable simple function: f(x) = Z;; cilg;,

then its integration over A equals 3_; c;ju(Ej).
In particular, if f = C = constant, then [, fdu = Cu(A);
Also, [, 1gdu = n(E),YE C A.
2. Linearity: f,g € L'(A) = af + Bg € L1(A),Ya,B € R and [,(af + Bg)dp =

of, fdu+ 3 [, gdu.

A A A
Proof. 3f, = f,9n = g where Vf,,, g, € LY(A) = af, + Bg, = af + (g, and by
linearity of Lebesgue integrability of simple functions we get Vo f,, + 89, € L1(A),
where Yo f, + g, is clearly still simple, = af + g € L'(A), [,(afn + Bgn)du

exists and equals o [ 4 fudp + [ 1 9ndpe by linearity of series. Taking limit n — oo,
we obtain [, (af + Bg)dp = o [, fdu+ 6 [, gdp. O

8. Ifu(A) =0 = VfeL'(A) and [, fdu=0.
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A
Proof. Vf: Simply use the standard! f, = f. It’s trivial that Vf, € L'(A) =
f e LYA). Since u(A) = 0, we have u(E) = 0,YE C A = by definition,

Sy fadp =0 = [, fdu=0. O

4. If f =0 a.e. on A, then f € L'(A) and [, fdu = 0.
As a corollary, if f,g are measurable on A and f = g a.e. on A, then f,g are
Lebesque integrable or not Lebesque integrable simultaneously, and if they are Lebesgue

integrable, [, fdp = [, gdp.

(So, ’Lebesgue integrable’ ignores measure-zero sets.)

Proof. Let f =0 a.e. on A. Choose the 'standard’ f, é} f. By construction, Vf,,
which is a simple function, f, =0 a.e. on A.

—> fn € L1(A) by definition and [, fodp =0 = f € LY(A) and [, fdu = 0.
If we have f, g are measurable on A and f = g a.e. on A.

— f—g=0a.e. on A Consider f = (f—g)+gand g=(g— f)+ f, which help
us check the Lebesgue integrability on both sides (If f is Lebesgue integrable, then
g = (g — f)+ f is also Lebesgue integrable. Coversely, if g is Lebesgue integrable,
then f = (f — g) + g is also Lebesgue integrable.). Now the second proposition and

the conclusion above give what we need. O]

5. If [ is bounded a.e. on A, i.e. |f| < C a.e. on A, and f is measurable, then

feLi(A) and | [, fdu| < Cu(A).

9

Proof. From the forth proposition, we can replace ’a.e.” by ’everywhere’. Now,
A

|f| < C on A. Then take the ’standard’ f, = f. By construction of f,, Vf,

is bounded by C == by the proposition for simple functions, f,, € £!(A) and

| [, fadp] < Cu(A) = f € L'(A) and passing to limit: | [, fdu| < Cp(4). O

6. If f € LY(A), then Vf, = f, where all f, are simple and measurable, IN € N :
Vf. € L'(A),Yn > N. And hence, by above, [, fdu = lim [, fudpu.
n—oo

Proof. Take e =1 = IN € N, we have |f, — f| < 1,Vz € AVn > N = f, =

Here, ’stantard’ means being the same as the construction of such {f,} in the proof of Theorem 6.1.
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(fo—f)+ f where f, — f is bounded and measurable, and f € L'(A) = f,—f €
LY(A) and f, € L1(A). O

In fact, we can also prove by contradiction, which focuses on the definition of the
Lebeegue integrability of f.

7. Lebesgue Integrability Inequality: f >0 a.e. on A, f € L1(A) = [, fdu>0.
As a corollary, if f > g a.e. on A and f,g € L'(A), then [, fdu > [, gdp.

Proof. We still use the ’standard’ f,, = f. Then, by proposition 6, we have Vf, €
L'(A). Note that f, > 0 a.e. on A by construction. By definition, [, fody >0 =

passing to limit: fA fdu > 0. m

8. Let f,g be measurable on A, g € LY(A), and |f| < g a.e. on A. Then f € L1(A)

and | [, fdul <1 [, gdpul.

Proof. Set f*(z) = W >0and f~(z) = W > 0.
Note that |f| = fT+ f~and f= fT — f~. Also, 0 < fH~ <|f].

[ =0 0, f=0;
One can also write f1 = and f~ =

0, f<0 [ <0
Lemma 5.9. f is measurable <= [ and f~ are both measurable.
Then, it’s sufficient to prove the statement for f > 0 because if so, then for
general f, since 0 < fH~ < g, f7 e LYA) = [f=f"—f € L'Y(A). Since
Jaft Uysodp < [, g-1ysodpand [, f~-Tpcodp < [, g-1pcodp, we have | [, fdu| =
| [ ST Lo — 7 Apcodpl < [, f7 - Tpsodp+ [, [~ Lpcodp < [, gdp = | [, gdpl.
So, from now on, we assume f > 0.
Choose f,, = f where Vf,, is simple and measurable Yn > N for some N € N, and
{fn} is non-decreasing.
Choose g, = f where Vg, is simple and g, € L*(A),Vn > N for the same N, and
{g.} is non-increasing. Thus, we have 0 < f,, < g, but g, € L}(4) = f, € L}(A)
by being restricted by an upper bound and fA fndp < fA gdp = passing to limit,

Jafdu < [, gdp. O
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9. Absolute Lebesque Integrability: Let f be measurable on A. Then f € LY(A) & |f| €
LYA). And if so. | [, fdp] < [, 1F]dp.

Proof. <" If | f| € L'(A), then take g = |f| in proposition 8, we get f € L1(A).
?=": Suppose f € L}(A), then If,, = f where V, is simple and Lebesgue integrable.
Then, |f,| = |f| since ||ful = || < |fn — f|- V| f0a] € L'(A) since it corresponds to
the same series that f,, has in the sense of absolute convergence. Thus, |f| € £L1(A)
by definition.
Finally, | [, fdu| < [, |f|dp, which follows from proposition 8 by taking g = |f]|.

[

Remark 5.6. This fails for Riemann integrability. Consider the function taking its

value as 1 at all rational points and —1 at all irractional points.

10. If f € LY(A) and E C A is measurable, then f € L'(E).
Furthermore, if f > 0, then fE fdu < fA fdu.

Proof. By the decomposition f = f* — f~, it is sufficient to prove for f > 0. Still
take the standard f,, é& f, then clearly we also have f, g f since E C A.

Clearly, f, € L*(E) since its series Y ¢;u(E;) on E is majorated by that on A, and
[ fadp < [ fadp (Note that f,, > 0.).

— f e L'(F) and passing [, fodp < [, fadp to limit: [ fdu < [, fudpu. O

11. o-additivity of Lebesque integration: Let f € LY(A) and A = |_|]°i1 A; where VA, is
measurable. Then f € L'(A;),Vj, which follows from proposition 10, and fA fdu =
Z;; fA, fdu, where RHS converges absolutely.

Proof. Using f = f* — f~, we only need to show for f > 0.

Case 1: f(x) = 1g(z),E C A. Then the identity means p(E) = > u(E N A;),
which is true according to the o-additivity of .

Case 2: f(z) = Y cilg,(x),¢; > 0, ie. fis simple and non-negative. [, fdu =
>oiCi [alpdn =3¢ > fAj Lpdp=232;¢ fAj Lpdu=>3; fAj(Zi ¢ilp,dp) =
5,

U
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12. Inverse of 11 holds for f > 0: If 3= fAj fdp < oo, A=, Aj, then f € L1(A) and
Jafduw=32; [, fdp.

Proof. m
13. Chebyshev Inequality: Let f € L(A), then p({|f| > A}) < 5 [, |f|dp.

Proof. Let Ay :=={x € A:|f(z)| > \} C A.

Then [, [fldn > [, |fldu > [, Adp = du(A) = p({|f] = A}) < 5 [, [fldp.
Il

14. Let f € L'(A) and [, fdu =0, then f =0 a.e.

Proof. Consider E := {f # 0} = {|f| > 0} = Upendlf| = 1} But p({|f] = 1}) <
k [, |fldi = 0 by Chebyshev Inequality. By o-additivity, u(E) = 0. O

15. Absolute continuity: If f € L'(A), then Ve > 0,35 > 0 : YV measurable set E C A
with p(E) <6, it holds | [, fdu| < e.

Proof. In view of | [, fdu| < [, |f|dp, we can switch to |f| = now assume f > 0.
Consider 4, :={x € A:n—1< f(z) <n}, then A =[], A,. By c-additivity,
fA fdp =35>, fAn fdp, which is a convergent series because f € £L'(A) = For
fixed e >0,3IN € N> v, [, fdu= fof:NHAn fdu < e.

Now, write A = B| |C, where C' = | |77 ., A,. Note that floc < N, set ¢ := &.
Now, ¥V measurable E C A : u(E) < 6, we have [, fdu = fEmB fdp + fEﬂC fdu <
Jpfdu+ NuW(ENC) <e+ N5 = 2e. O

16. Let f € LY(A), A= .2, A, where Ay C Ay C A3 C ... with YA; is measurable.

Then, [, fdu = nh_}rrgo Ja, fap.

Moreover, following this intuition, one may define fj;o fdu as Nhrf fjfvv fdu.
—+o0

Proof. Repeats the proof of continuity of p. Write A = | |2, A}, A} = A;, Ay =
AQ \ Ala etc.
00 . N . .
fo = S5 fy fd = i S Sy Sl = S Sl [ S
]
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17. Inverse of 16: If f > 0 and A = J.2; A, where Ay C Ay C A3 C ... with VA, is
measurable, f € LY(A,),Yn, and Ja € R,a = ngrfoo [a, fdp, then f € L'(A) and
f 4 fdp = a.

At the end of this subsection, let’s reflect on the philosophy behind Lebesgue integral

and investigate why it extended the boundary of our understanding of ’integrable’.
From a structural point of view, the Lebesgue integral is based on reversing the
classical Riemannian paradigm. Instead of decomposing the domain into small geometric
intervals and approximating the function locally on each piece, the Lebesgue framework
reconstructs integration by analysing the measure of inverse images under the function.

The central role is played by the level sets
{r e X: f(z) > a}, {reX: f(z) =c}, c eR,

whose measurability guarantees that the function interacts coherently with the underlying
measure space.
A measurable function is precisely one for which these sets lie in the sigma-algebra A,

and the integral is defined through approximation by simple functions

kn

fo=Y ¢Gulg,.  Ejn€ Ak, e NU{oo}.
j=1
This representation encodes f as a countable superposition of measurable layers, so that
[ fdp arises as the limit of weighted measures of these layers, as opposed to limits of
Riemann sums.

This shift yields a theory stable under pointwise limits and dominated convergence:
the behaviour of the function on sets of small measure is negligible, and pathological
oscillations do not obstruct integrability, since their contribution is controlled by pu.
Consequently, the Lebesgue integral extends the Riemann integral whenever the latter
exists, i.e. [ fdu = [ fdz, while admitting functions that may be nowhere continuous or
highly irregular. This measure-theoretic foundation explains why the Lebesgue integral

provides the natural analytic setting for limit theorems, £P-spaces, and probability theory.
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5.3 Three Convergence Theorems

5.3.1 Dominated Convergence Theorem

THEOREM 5.10 (Dominated Convergence Theorem, Lebesgue). Let (2,.A, 1) be a
measure space with a finite complete measure u, A € A,V{f,} is measurable on A, f, =3 f.

Assume that 3g € LY(A) : |fa] < g a.e.

Then fn, f € LY(A) and 3 liril S fadp= [, fdp.

Proof. O]

5.3.2 Monotone Convergence Theorem

THEOREM 5.11 (Monotone Convergence Theorem, Beppo Levi). Let (2,.A, i) be a
measure space with a finite complete measure . Let f, € LY(A),A € A and f; < fo <
f3<...ae

Assume that 3C € R s.t. | [, fodp| < C,Vn.

Then, f, =5 f, f is a.e. finite, Lebesque measurable on A and fA fdp = lim fA fndp.
n—oQ
Proof. O]

THEOREM 5.12 (Monotone Convergence Theorem (Series Version), Beppo Levi). Let
(Q, A, 1) be a measure space with a finite complete measure p. Let f, € LY(A),A € A
and fn, >0 a.e. (Thus the series ) 7, fn is non-decreasing a.e.)

Assume that 3 77 [y fadp < 0.

Then Y7y fu =5 f € LY(A) and [, 732 fadp = Y232, [ fadp.

5.3.3 Fatou’s Lemma

THEOREM 5.13 (Fatou’s Lemma). Let (2, A, 1) be a measure space with a finite
complete measure u, A € A. Let f, € L'(A), f, > 0.

Assume that 3C € R s.t. | [, fadpu| < C,¥n, then [, fdu < hﬂg}lff/x fadu < C,
where f(x) := liminf f,(z).

n—oo
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In particular, f is finite a.e.

Recall: liminf a,,(x) = inf{limits of convergent subsequences} = lim (gf ag(z)).
n—oo n—oo k>n

Proof. Let g, := é1>1f fr(x), then f(x) = lim (inf fy(z)) = ILm gk (7).

n—oo k>n

]

Corollary 5.14. If in addition, f = lim f, a.e., then f is a.e. finite and fA fdu < C.
n—oo
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5.4 Comparison of Riemann and Lebesgue Integrals

Darboux Sum: Let f be Riemann integrable on [a,b]. For any partition P of [a,b]:
a=z9 <1 <...<xp=0A4;:=[vj1,2;]. Mj:=sup,en, f(x),m; = infren; f(2).
Obviously, we have m; < M;. Then the upper and lower Darboux sums are U;p :=

Z?:l M;|A;|, Ly p = Z?zl m;|A;|, and the upper and lower Darboux integrals are

Uj:= lim Usp,Ly:= lim L;p.
f max |A;|—0 1Py 5 max |A;|—0 1P
Lemma 5.15. f is Riemann integrable <= lim Usp= lim Lyp.
max |A;|—0 max |A;|—0
. . . b . .
And if f is Riemann integrable de= lim Upp= lim L¢p.
ff g ’ fa f max |A;|—=0 1P max |A;|—=0 U

THEOREM 5.16. If f is Riemann integrable on [a,b], then f € L([a,b]) and both

integrals are equal.

Proof. Let I be the integral of f on [a,b] in the sense of Riemann.
Darboux sums: Uy p =37 | My|Asl, Ly p =377 my|Al.

m;, x € (x;_1,x;) for some i, M;, x € (z;_1,x;) for some i,
gn ‘= n —

0, otherwise, 0, otherwise,

Now, we just consider the special splittings: we increase the density of the partition
by setting that on step n, there are 2" segments. If we keep the partition points in step
n — 1 and continue to step n, then g, is non-decreasing a.e. and h,, is non-increasing a.e.

Note that g,,h, are a.e. simple, finite-valued functions = g,,h, € L ([a,b]).
Jiag Indie =" milAi| = Lyp,, [, hndi =32 Mi|Ai| = Uy,

max {| f[a’b] gndpl, | f[&b] hodpl} < C = supyy [f| - (b —a) == can apply Levi’s
Theorem and one gets ¢, =5 ¢, h, =5 h, where g, h are measurable and g < f < h.
And f[a’b] gdp = nhj& gndpt = nhj& L¢p, =1, f[a’b] hdp = nlggo hndp = nlgr;o Usp, = 1. So,
f[ab]h—gdu:Obuth—gZO = h—g=0ae. = h=gae =— f=g=hae.
= f is measurable and f € £!(A) and f[mb} fdu = f[a,b] hdp = f[a,b] gdp = 1. O

So, Lebesgue integral is more general than Riemann integral.

Remark 5.7. The converse is wrong. For example, the Dirichlet function D(x) = 1g(x) is

not Riemann integrable (upper sum: b — a but lower sum: 0) but Lebesgue integrable
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(The rational numbers are countable, so their Lebesgue measure is 0).

THEOREM 5.17 (Lebesgue Criterion). A function f on [a,b] is Riemann integrable
<= f is bounded and continuous a.e. (The set of discontinuous points has measure

zero. )

Proof. 1. necessity: Let f € R|a,b] which is the collection of all Riemann integrable
functions. Then f is bounded.

Set w; = M; —m; = sup,, ,.cn,

f(z;) — f(y;)|, which is called the oscilation of f on
A;. Then, Ve > 0,30 > 0 : V partition with max; |A;| < 0 we have Y 7" | w; - |A;] < e.
Take Vk € N s.t. there exists a partition with Y 1" w; - [A;] < 7. Let Ay := {
all A; here with its corresponding w; > o }, then p(A4y) =3, ., wiz |A;] < 5.
Indeed, if otherwise p(Ax) > 3, then Y0 w; - [A] > >0, 0 wiz 2 Wi |A;] >
o D i st wi> |A;| = e p(Ay) > 45, which leads to a contradiction. So, pu(Ay) < 5.
Now, set A := Ny>1 U=y Ax and B := [a,b] \ A. Let’s prove that u(A) =0 and A
actually contains all discontinuous points. pu(UpsnAr) < D00y 1(Ar) < Yoy 36 =
o Note that p(UpsnAx) is non-increasing in N and 55 — 0(N — o0), we get
n(A) = ]\}i_{ﬂoo/L(UbNAk) = 0.
It remains to prove that f is continuous at Vo € B. B = Uyn>1 Mg=n [a, 0] \ A, but
note that [a, b] \ Ax = U{ open intervals on each of which }
2. sufficiency: Now f is bounded: |f| < C on [a,b] and E := discontinous set, u(E) = 0.
We will prove that f € R[a,b].
Take Ve > 0, then 3G : open, G D E, u(G) < e. Let K := [a,b] \ G, closed and
bounded = K is compact. And f is continuous at Vo € K = Vx € K,3dU, :
open interval containing x s.t. w, :=sup, .oy, |f(y) — f(2)| <e.
{U,} is an open covering of K — 3U; = Ux,,...,U,, = U,, : a finite subcover.
Here, we always choose the subcovering satistying U; ¢ U;Vi # j. In fact, if we have
a finite subcovering, one can always choose the ’smallest’ subcovering of the finite

covering by eliminating those covering sets being contains in some other covering

sets in the same covering. (We will always choose such ’smallest’ finite subcovering

by default.)
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Set 6 € (0, 5). Now take V spartition of [a,b] with max; |A;] < 4.
Sy 1A

= 2_n,c6 Wi [A1 4 228, ctitor some i Wi+ 18] + D22 A, 0001 for some ¢ Wi+ 1A
<20 Y neq 1Bl H e 28 e, [Al +2m-2C- 6
<2C-u(G)+e-(b—a)+2C-¢

<2C-e+e-(b—a)+2C-¢

=(4C+b—a)-¢

—> f € Rla,!].

Ezample 5.1 (Thomae’s Function). Thomae’s Function ((x) :=

((x) is continuous at Vo ¢ Q: Ve > 0, there are only a finite number of rational
numbers ”* where % > ¢ (because n would have to be small).Since there are only a finite
number of these "tall spikes,” we can pick a neighborhood around our irrational number x
that is small enough to avoid all of them. Therefore, for all z in that neighborhood, ¢(z)
is either O (if irrational) or very small (if rational with large n). Thus, it is continuous.

Thus, ((z) € R|0, 1] follows from Lebesgue Criterion.
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5.5 Direct Product of Measures

Let {(€2,A;, 1)}, be a system of spaces with finite complete measure.
Now, we may consider:
1. Q=0 x Qg X ... Qy;
2. 8 =A x Ay x ... A, ={A; x Ay x ... x A,,VA; € A;} is s system of subsets in
24
3o = @ p2 @@ iy, (AL X Ay X X Ay) = i (Ar) X p(Az) XX (Ay);

Fact: S is still a semi-ring.

Proposition 5.18. p is still a o-additive measure on S.

Proof. We prove for the case n = 2 and by induction we get all cases.
We need to prove: if C = A x B|_|;.’i1 C;,C; =A; x B; with A, A; € A, B,B; € A,

then p(C) = 372, u(Cy).

0, S AJ,
fi(x) == pa(Bn) - L4, (2) =
,LL2(B]')7 x & Aj;

Then, note that Vo € A, >, f;(z) = pa(B) == > 77, f; is integrable over A and

we apply Monotone Convergence Theorem (Series Version), Beppo Levi.

p(A) - po(B) = [ypa(B)dpn = [, 3752, fi(x)dpm = { Levi } = 3777, fi(z)dp =
> o1 H2(Bj) - i (Ay)

This exactly means p(C) = >°72 | u(Cy). O
DEFINITION 5.4.

Fact:

Remark 5.8.

©©@O®SO 89 o


https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

REAL ANALYSIS 5 Lebesgue Integration with a Finite Complete Measure

5.6 Fubini Theorem

THEOREM 5.19 (Baby Fubini Theorem). Let 1 = p13 ® po and we define (Q, A, u) like
above.

Let A € A,V € Qy, define the respective section S, : {y € Qo : (x,y)inA}. Then

1. For a.e. x € Qy, it holds S, € Ay;

2. The function ¢(x) := pa(S;) is measurable on §y;

3. p(A) = [, dlx)da.
Proof.

Lemma 5.20. Let (2, A, p) be the Lebesque extension of (2,5, ). Let A € A.
Then 3B D A u(B\ A) = 0, with the form B = N, B,,B; U By U ..., VB, =
1By B, € R(S),Bn, C By, C ...

Proof. m
Case 1: A = Ay x Ay, then obviously pu(A) = p(A;) - u(As) and ¢(z) = p(A2) with
Sx = AQ.
Case 2: A € R(S) = [}, Cj,Cj = X; x Y. This case can be deduced to Case 1 if

we divide the region into disjoint union of “rectangles” wiht the form A; x As.

Case 3: C = OJ
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6 Lebesgue Integration with o-additive Mea-

sure & of oco-valued Function

In what follows, let (£2,.A4, 1) be a measure space with a complete, o-additive measure
(possibly, u(2) = +00).

Here, o-additivity means: 3B € A : Q = L2, By, u(By) < +o0.
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6.1 Lebesgue Integration with o-additive Measure

DEFINITION 6.1 (Lebesgue Integrable Function). Let f be measurable on 2, f > 0
and f € L}(Bg). Then f is Lebesgue integrable on  (Notation: f € £(Q)), if
S, ka fdu < +o0. The Lebesgue integration of f on Qis [, fdu = [, ka fdu.

Note that

A=ANQ=AnN <|_|Bk) = [(AnBy), vAecA

k=1 k=1

Now, fix f, then VA € A, the function vg(A) = fAan fdu defines a o-additive

measure v (by the o-additivity of Lebesgue integration). (Here, vy = vy.)

v(A) = ka(A) = Z/AQB fdu.

k=1 k=1
= the above construction of fﬂ fdu is exactly the construction of the o-additive
measure v.

Now, we can use the propositions of o-additivity measures. v(A) := >~ vg(A).

S| gau= | an= [ san
k=1 ANBy, UEOZI(AQB]C) A

So, we conclude that the definition of v is independent of the partition Q = | |2, B.

Also, we have v(A) < +oo < f € L1(A).
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The next theorem compares improper Riemann integration and Lebsgue integration.

THEOREM 6.1. Let’s consider the improper Riemann integration f;roo f(z)dx (pre-
suming thet f € Rla,b],Vb > a).
Assume that f > 0. Then the (R) f;oo f(z)dz coverges <= the Lebesque integration

(L) f:oo f(z)du < 400 and in the latter case coincide.
Proof. Since the function ®(b) := fab f(x)dz is monotonic (due to the fact that f > 0),

3 lim [V f(2)dr <= 3 lim_ [V f(z)dz. But (R) [ f(z)dz = (L) [¥ fdp O

b—+o0 N—+o00,NeEN
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o0
j=1

D ie leiln(Ay) < 400 and [, fdp =377, cju(4;) (A=LZ, Aj).

2. Linearity: f,g € L'(A) = af + B¢ € L'(A),Ya,5 € R and [,(af + Bg)du =
of, fdu+B [, gdu.
Extra Claim: If f € LY(A), and g has an integration over A (finite or infinite), then

Proposition 6.2. 1. Integration of a simple function f(x) = ", ¢4, evists <=

the above still holds.
Eatra Claim: [, f + gdp = [, fdu+ [, gdp holds if [, fdu and [, gdp are both
+00 or both —oo.
8. wA)=0 = VfeLl'(A) and [, fdu=0.
4. If f=9 ae = fA fdup and fA gdu are decided in the same way.
In particular, if f =0 a.e., then fA fdu =0.
5. Bounded f may ¢ L'(A) and A [, fdu, but [, |fldp < sup|f]- p(A) still holds.

1, x> 0;
Counter Example: f(z) =

-1, =<0
6. Af, = f, where all f,, are simple, fails in general.
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6.2 Three Convergence Theorems

6.2.1 Monotone Convergence Theorem

THEOREM 6.3 (Monotone Convergence Theorem, Beppo Levi). Let (2, A, u) be a

measure space with a complete, o-additive measure p. Let f, € LY(A),A € A and

f1 §f2§f3§ a.e.
Assume that 3C € R s.t. | [, fadpu| < C,¥n. Then, f, L8 f for some f, f is a.e.

finite, Lebesque measurable on A and fA fdp = lim fA fndp.
n—oo
Proof. O]

THEOREM 6.4 (Monotone Convergence Theorem (Series Version), Beppo Levi). Let
(2, A, i) be a measure space with a complete, o-additive measure . Let f,, € L1(A), A e A

and f, > 0 a.e. (Thus the series Z?:l fn is non-decreasing a.e.)

Then fA Z;)il Jndp = Z;il fA Jndp.
Further assume that Y322\ [, fudp < 00. Then Y7, fo =% f € LY(A) and [, 3772 fudp =

> imr S fudp

6.2.2 Fatou’s Lemma

THEOREM 6.5 (Fatou’s Lemma). Let (€2, A, 1) be a measure space with a complete,
o-additive measure u, A € A. Let f, € L}(A), f. > 0.

Assume that 3C € R s.t. | [, fadu| < C,¥n, then [, fdu < liT{r_l)gffA fadp < C,
where f(z) := ligg'gjlf fo(z).

In particular, f is finite a.e.

Proof. m

6.2.3 Dominated Convergence Theorem

THEOREM 6.6 (Dominated Convergence Theorem, Lebesgue). Let (2, A, 1) be a

measure space with a complete, o-additive measure pu, A € AN{f,} is measurable on A,
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fo =5 T
Assume that 3g € LY(A) : |f,| < g a.e., then f,, f € L*(A) and 3 lirf S fadp =
Ja fdp.

Proof. First, note that f € L1(A) and f,, € L1(A). This follows from the properties of
integrable functions (since |f,,| < g implies integrability, and the limit function f is also
bounded by ¢ a.e.).

Step 1: Lower Bound

Consider the non-negative sequence of functions g + f,, > 0.Since f,, — f a.e., we have

g+ fn — g+ f a.e.Applying Fatou’s Lemma:

[ o+ D <timint [ (g+ 1) do

Using the linearity of the integral:

/gdu+/fdug/gdu—kliminf/fnd,u
A A A n—=oo JA

Since g € L1(A), [ gdu is finite, so we can subtract it from both sides:

/ fdu < liminf/ fndu
A n—oo A

Step 2: Upper Bound
Next, we consider the sequence g — f,, > 0.Using the same logic ("do all the same”),

we apply Fatou’s Lemma to g — f,,. This yields the inequality:

/hmmf(g fn)du < hmmf/(g — fn)dp
A

n—oo

[odu— [ tau< [gau—timsu [ 1,d
n—oo

/fdu < —hmsup/fndu
@O0 96 —
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fdp > limsup / Fodp

n—oo

[ fdu=timsap [ 5, d
A n—oo A

Putting the results from Step 1 and Step 2 together, we have:

n—o0

limsup/fndug/fdughminf/fndu

Since it is always true that liminf < lim sup, all three terms must be equal. Therefore,

the limit exists and:

lim fnduz/fdu
A A

n—oo
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6.3 What kinds of co-valued Functions are measur-

able(?)

In what follows, let (€2, .4, 1) be a measure space with a complete, o-additive measure
(possibly, u(2) = +00).

Here, o-additivity means: 3B € A : Q = L% By, u(By) < +o0.

Question: What about oco-valued function?

Answer: R = RU {+o0} = [a,b], if you apply arctanz : R — [—2, Z].

_ ~ Open sets in R
Lemma 6.7 (Open Set in R). Open sets in R =

Open sets in R U Neighborhood of + co

U” in the definition of the second kind of open set means the result set is Borel.

114

DEFINITION 6.2 (Measurable Function). Let (€,.4, 1) be a measure space with a
complete, o-additive measure (possibly, 1(2) = 4+00). Then a function f : Q — R is

V Openset ACR, f~1(A) e M(Q);
called measurable if and only if

F 1 (£00) € M(Q).

As long as it makes sense: Similarly, we still have

Proposition 6.8. 1. f 4 g is measurable;

2. f-g is measurable;

3. f/g is measurable, provided g # 0;

4. Let {f,}>2, be a sequence of measurable fucntions on (0, A, i) and f,(x) =5 f(x).
Then f(x) is also measurable;

5. Let {fn(x)} be a sequence of measurable functions. If f,(x) is bounded from above
Vn for a.e. x € Q. Then sup f,(x),limsup f,(z) are measurable;

n n—o00

6. Let {fn.(x)} be a sequence of measurable functions. If f,(x) is bounded from below

Vn for a.e. x € Q. Then inf f,(x),liminf f,(x) are measurable;
n n—oo
For integration, we define:
lf:u(E) = 07f,4fdlu’ = fA\Efduy

if W(E) >0, [, fdp:=+oc.

If f(x) € [a,4o0] for some a, let E := {z : f(x) = +o0}:
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For general f € R, we consider f as f = f*—f~ and deal with [, fdu = [, fTdu+ [, f~dp
if both terms makes sense.
Lemma 6.9. For f: f(z) € R,
feLll(A) < f(x)eR ae and f € L'(A\ Fis).

Also, we have stronger convergence theorems as follows.
THEOREM 6.10 (Strong Monotone Convergence Theorem, Beppo Levi). For {f,} :
fa(x) € R, fr, > 0, measurable, non-decreasing = [, nh_)nolo fadp = nh_}rglo S a4 fadp.
THEOREM 6.11 (Strong Fatou’s Lemma). For {f,}: fu(z) € R, f, > 0, measurable

= [, h,{]il%f fudp < nh_}lrgo [ fadps.
One application:
THEOREM 6.12. For 0 < f <g, f(z),9(z) € R, f, g measurable

e 0< [, fdu < [, gdn.
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7 LP Space

In what follows: (€2, A, 1) is a space with a complete measure. More precisely, we use it

to denote the space of equivalent classes of a.e. equivalences.
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7.1 L' Space

Recall: £(Q) = {/ : fy |fldu < o).
Recall: £1(Q) is a linear space: f,g € L'(A) = af + g € L (A),Va, € R. Here, L1(Q)
is equipped with the norm || f|| := [, | f|du, which is indeed a norm:
LI FI = AAT- (LA
2. 1f + gl < WA+ llgll
3. [IfIl=0 <= f=0.
So, £1(2) is a normed space.
Ezample 7.1. Q =N, u(A) = #A, which is the cadinality of the set A C (.
L) = 1) = {(ar,a2,...) : 377 |aj| < oo}, which is the # is counting measure
and [ fd# =327, f(n).
THEOREM 7.1. £Y(Q), equipped with the norm || - ||, is a Banach space.
Reminder: Let X be a metric space, {x,} be a Cauchy sequence and 3I{x,, } satisfying

k—00

Tn, =0 = 1, "= a, since d(x,,a) < d(x,, T,,) + d(a, x,,) < 2.

Proof. Let {f,} be a Cauchy sequence.

Then take increasing {Ny}32, : Vm,l > Ny, || fm — fill < 55. In particular, we have
[ = Il < 35 = (N —fn)die < 55 = 302 Jo feri— fudp < 0o = by
the series version of Levi Theorem, we get > | fn,,, — fn,| < 00 a.e. = > (fne, — fve),
which is exactly a kind of partial sum, is absolutely convergent a.e. == fy, =5 f.

Since fu, is also a Cauchy sequence, Ve > 0,IN € N:Vm,n > N, ||fn,, — fnll < e

Now, apply Fatou’s Lemma, we have

/ liminf(fy, — Fa,)dpt = / (Faw — A= e — 1]
Q Q

l—o00

<liminf [ (fn,, — fn,)dp = liminf || fn,, — fn,]] < liminfe =¢
l—o0 Q l—00 l—o0

Thus, the limit f € £1(Q), since fy,, — f € LYQ), fn,, € L(2). And we have

Vm > N,||fn,, — fl| < e. By definition, fy,, £, f. So, {f.} contains a subsequence
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1
convergent to f = f, 5 f O

Remark 7.1. If we restrict to u(£2) < oo, then we have the following relationship between
3 types of convergence:

convergence a.e. = convergence in measure i

convergence £! = convergence in measure
The second implication is true even for p(§2) = oo:

By Chebyshev inequality, u({|f. — f| > 6}) < 5 [, |fn — fldi can be bounded from
above.
Remark 7.2. In probability,

1. convergence a.e. <= convergence with probability 1;

2. convergence in measure p <= convergence in probability;

3. convergence in £! <= convergence in mean.
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7.2 LP Space with 1 < p <

Assume 1 < p < o0.

DEFINITION 7.1 (£P-function). A measurable function f on (€, .4, i) is called an

LP-function if [, |f[Pdu < oo.
DEFINITION 7.2 (L? Space). LP :={ all LP functions / equivalent classes}.
DEFINITION 7.3 (£ Norm). For f € L7, || fll, := ([, |f|pdu)%.

It is indeed a norm:

LA fllp = AL 1A

2. 1f +gllp < Ifllp + llgllp: see Minkovski inequality below;

3. |l =0 <= f=0.
DEFINITION 7.4 (¢ Space). 7 :={x = (@p)pen CRor C : > 7 |z,]P < oo}.
DEFINITION 7.5 (2 Norm). For z € £, ||z||, := (3222, |za]?)"/ .

Notation: Vp > 1, the dual number of pisq: =+ = =1. ¢ = 1%’ so q > 1.

1
q

SRl

Lemma 7.2. ¥a,b > 0, it holds: ar -bi < 2 + L.

v
Proof. If a-b =0, trivial.
Assume a > 0,0 > 0. Then %lna + % Inb <In(2 + g) Then it holds by the convexity

of the In(-) function. O

THEOREM 7.3 (Holder Inequality). If f € LP(Q),g € LYQ), then f-g € LYQ) and

JoIf - gldw < 11 £1lp - llglly-

Proof. It || fl, - llgll; = 0, trivial.

We now normalify the inequality by letting f — i Jpr and g — Hgll . And now

I fll» = llgll = 1. We need to prove that [, |f - gldu < 1.
In the above lemma, choose a = |f|P,b = |g|?, then |f|-|g| < YE + 9 Then

p q

P q
Jaf - gldp < Jo 5+ 52 = 311 fllp + fllalle = 3+ § =1 .

Remark 7.3. This theorem holds even without f € LP g € L1.
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THEOREM 7.4 (Minkovski Inequality). Let f,g € LP(Q2),p > 1. Then f + g € LP(2)

and || f + gllp < [[fllp + [lgllp-

Proof. First, consider the case: f+ g € LP(Q).

f+glP=f+glP " 1 f+gl < f+glP - fI+ I f+gP " gl

— /Q|f+glpdu§/9|f+g|”‘1-Ifldﬂ+/ﬂlf+glp‘1-|g|du

< { Holder Inequality }

< (L1 ([ 15+ gD+ ([ 13 ([ 15+l a,

where ¢ = z%'
Thus, divided by (fy,|f + glPdu)e, we have || f + gll, < [[£]l, + llgll,
Next, consider the case: without approximating || f + g||, < oo.
JA,C Ay C ... Q:U‘?OAj,fA |f + glPdu < oo.

1

Thus, VA;, we have fA f+g|pd,up< fA | f1P) % fA ok

Now, let j — oo, we get |[f +gll, < |[fllp + llgll,- =

Corollary 7.5. LP(Q2) is a linear space.

Furthermore, LP(§2) is a normed space.

THEOREM 7.6. LP(Q2), equipped with the norm || - ||,, is a Banach space.

Proof. First, assume p(2) < oo.

Take a Cauthy sequence {f,}. 3{ Ny}, which is increasing, s.t.

Vm, 1 > Ny, || fm = fillp < 5.

Now, [ |fm — fildu < { Holder Inequality with f = f,, — f,g =1, }
< fm = Fillp Wllg = Fm = Fillp - () = S foy | Fves = Fvlde < 00
= apply Levi Theorem, }|fn,,, — fn,| < o0 a.e. = fn,,, X5 f

Since {fn,} is a Cauchy sequence itself. Ve > 0,dN € N : ¥Vm,l > N, we have

1/ = Frllp <
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Now, fix m and let | — oo, by Fatou’s Theorem, ||fn,, — f|| <e¢ = fn,, £ f =
Ja 5 .

Next, assume that p(£2) = oo.

Note that we only used 1(Q) < oo for proving Ify, =5 f.

HA; Q=12 Aj, (A;) < oo and VA, (fA]- | fn = filPdp) ractp < || fin — fill, since
A; C QL

= {f,} is also Cauthy in VLP(A;).

By the above, d a.e.convergent subsequences:

On A; : 3fi1, fi2, fi3, ... convergent a.e.

On A, : 3fo1, fa2, fo3,... convergent a.e., which is a subsequence of the above sequence.

On As : 3f31, f32, f33,... convergent a.e., which is a subsequence of the above sequence.

Using the Cantor diagonal trick: {f,,} is a subsequence of {f,} and converges a.e. on
VA,

= {fun} converges a.e. on (.

Finally, apply Fatou’s Lemma just as what we’ve done in the proof of ‘L}(Q) is a

Banach space’, we arrive with the conclusion that £7(£2) is a Banach space. ]
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7.3 Separable £ Space

Question: When do we have £P(€2) being separable?

DEFINITION 7.6 (Countable Base). We say that (€2, .4, 1) has a countable base, if
VA : pu(A) < oo,Ve > 0,3B; : n(AAB;) < €, where {B;}52, is a countable system of sets
in A.

Example 7.2. If p is the Lebesgue measure on R”, one can choose {B;} as the collection
of finite unions of rational cells.

THEOREM 7.7. Let (Q, A, 1) be a measure space with a countable base. Then LP(£2)

1s separable for 1 < p < oco.

Proof. Let B ={0,}5°, be the countable base, and let Ay be the algebra generated by

B. Note that Ag is countable. Define the countable collection E as:

E= {ZQj]lBj

J=1

mE]N,quQ,BjGAO}.

We aim to show that F is dense in LP(Q). Let f € LP(Q2) and let € > 0.

Step 1: Reduction to non-negative functions.

Since f = fT— f~, where f*, f~ > 0, it suffices to approximate non-negative functions.
By the Minkowski inequality, if we can find ¢1, g2 € E such that || f* — ¢1]|, < £/2 and
£~ =g2lly < /2, then £ = gll, = 1(F* = F) = (1= @Iy < IF+ = rllp+1F~ —gally < =
Thus, without loss of generality, assume f > 0.

Step 2: Approximation by bounded functions (Levi Theorem).

Consider the sequence of truncated functions f, = min(f,n) - 1g,, where S, is a
sequence of finite measure sets increasing to €2. Then 0 < f,, 7 f pointwise. Since f € LP,
by the Monotone Convergence Theorem (Levi Theorem) or the Dominated Convergence

Theorem, we have:

Tim [1f = full, = 0.

Choose a bounded function h = fy for sufficiently large N such that ||f — hl|, < /4.
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Step 3: Approximation by simple functions.

Since h is bounded and vanishes outside a set of finite measure, there exists a sim-
ple function ¢ = Zszl crla, (with ¢, € R, Ay € A) that uniformly approximates h.
Consequently, in the LP norm:

€
||h - ¢||p < Z

Step 4: Approximation of measurable sets.

The sets A belong to A, but we need sets from the countable algebra Ay. Since Ag
generates A, for each Ay, there exists a set By € Ap such that u(AyABy) is sufficiently

small. Specifically, we choose By such that

K
9
<D lel e, =1l < 5
k=1

K K
E crla, — E crlp,
k=1 k=1

p

Let ¢ = Zszl crlp, .

Step 5: Approximation by rational coefficients.

Finally, we approximate the real coefficients ¢, with rational numbers ¢, € Q. Since Q

is dense in R, we can choose ¢ close enough to ¢, such that

K

£
19 = glly = |3 (= a)tn, | <3,
k=1

p

where g = Z,{;l qr1lp,. Note that g € E.
Conclusion.
Combining all steps using the triangle inequality:
£
If = gllp < [If =Rl + 12 = 0llp + ¢ = dllp + 1 —gll, <47 =e

4

Since E is a countable set, £P(€2) is separable. O
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8 Charge(Generalized Measure)
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8.1 Charge(Generalized Measure)

DEFINITION 8.1 (Charge). Let A C 2 be a o-algebra, then a function v : A — R
is called a charge (or generalized measure), if V disjoint Ay, Ay, ... € A, it holds
V(L2 Ay) = 3052, v(4)).

From now on, we firstly assume that v is finitely valued, i.e. v(A) # oo, VA.
FExample 8.1. For measures iy, s on A, we consider aqpy + qain, aq, g € R.

DEFINITION 8.2. For A € A, we call v is
1. positive on A, if VBe A B C A, u(B) > 0;
2. negative on A, if VB e A B C A, u(B) <0;
3. zeroon A, ifVBe A B C A,u(B) =0.
Apparently, zero = positive + negative.

Accordingly, we call A is a positive/negative/zero set with respect to v.
Ezample 8.2. If v is positive on A, then v|4n4 is a measure.

Proposition 8.1. VA € A with v(A) < 0,3A’ C A, A" € A, s.t. v is negative on A" and
v(A) <0.

Proof. Notation: S(C) :=sup{v(B): B C C}.

Now, consider S(A): If S(A) < 0, then just choose A" = A.

Assume §(A) > 0. Next, consider the case S(A) = +o0.

Then 3B; C A,v(By) >1 = v(A\ B;) <v(A). Let A; := A\ By.

Now, either S(A \ B;) < +o00 or we continue and find By C Ay : v(By) > 1. Let
Ay = A\ By

So, finally replace A by A, C A for some k. We can just assume that 0 < S(A) < +oo.

[

Remark 8.1. A charge has all the proposties of a measure that not involves non-negativity.
In particular, the continuity of union and intersection still hold and one can check

through same proof.
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THEOREM 8.2 (Hahn Decomposition). Let v be a charge on A C 2. Then 30+, Q-

Q=Q7||Q, s.t. v is positive on QT and negative on Q.

Proof. Let M := {all negative subsets of Q}. For instance, (§ € M.

Set av :=inf e v(A) and o < 0. A, € M : v(A4,) — «a.

Set Q= :=J ~, A,, then Q= € M, since unions of positive sets are still positive while
unions of negative sets are still negative if you partition the union into a disjoint union
and apply o-additivity.

v(Q) <v(4,),vn = (7)< nlgr;(} v(A,) = a.

Since « is the infimum, v(Q) = a.

Set QT :=Q\ @7, we claim that v is positive on Q7.

By continuity, let A C Q1 : v(A) < 0, then by the proposition, 3JA" C A : v(A’) <0
and v is negative on A’.

Now, we have Q7| |A" € M and v(Q | JA) = v() + v(4") < a, which is a

contradiction to the fact that « is the infimum. O

Remark 8.2. The decomposition Q = Q| |Q~ is essentially unique, i.e. if Q = O+ L] QN—,
then QF differs from QF by a zero set, respectively, since 0 \ QF € QF Q-
Corollary 8.3 (Jordan Decomposition). Let v be a charge on A. Then IvT v~ >0, i.e.

being positive on €, which means they are both measures in fact, s.t. v=vt —v~.

Proof. Q=Q" [ |Q".
VAe A, set vT(A) =v(ANQT) >0and v~ = —v(ANQ7) > 0. O

Remark 8.3. Jordan decomposition is not unique! One can choose v* — v* + u, where p

is any measure.
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8.2 Absolutely Continuous Charge

DEFINITION 8.3 (Absolutely Continuous Charge). A charge v on A C 29 is called
absolutely continuous w.r.t. a measure p on A, if VE € A with p(E) = 0, it holds
v(E)=0.
Ezample 8.3. For f € L1(Q), set v(E) := [, fdpu.
Proposition 8.4. Let A,y be two measure on A C 2%, X #£ 0 (i.e. A(Q) # 0), X be
absolutely continuous w.r.t. . Then AE € A, s.t.

1. w(E) > 0;

2. the charge X — ¢ - u is positive on E for some € > 0.

Proof. ¥n € N, consider A, := XA — < - p.

Apply the Hahn Decomposition for A,: Q@ = A} | A .

Set AT :=J_, Af and A==, A .

Since AT = Q\ A, by duality: Q = A" |A~.

A” C A, Vn, Ay isnegativeon A, => A, (A7) <0 = MNA7) <L1.pu(A7) = let
n—00:AA7) <0 = MNA7)=0. Now, A(A") > 0 since A\(Q2) >0 = pu(4A") >0
by absolute continuity.

= by continuity of x : In, s.t. p(A}) > 0, but A, is positive on A}

— take F:= Al e:= 1 O

THEOREM 8.5.
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