
Data Structures

and

Algorithm Analysis

Kai Chen

December 23, 2025

Part of the SUSTech-Kai-Notes Initiative

https://github.com/kaiiiichen/SUSTech-Kai-Notes/wiki

© 2025 Kai Chen. All rights reserved.

This work is licensed under a Creative Commons “Attribution-

NonCommercial-ShareAlike 4.0 International” license.

This document was typeset using LATEX.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://www.latex-project.org

Data Structures and Algorithm Analysis

Preface

These notes are compatible with the CS217 Data Structures and Algorithm Analysis (H)

(Fall 2025) at SUSTech, and part of the course-notes-and-resources initiative: SUSTech-

Kai-Notes.

Specific focus is placed on the mathematical analysis of algorithms, data structure

implementation details, and complexity theory.

cbna i ←↩

https://github.com/kaiiiichen/SUSTech-Kai-Notes/tree/main/CS217%20Data%20Structures%20and%20Algorithm%20Analysis%20(H)
https://github.com/kaiiiichen/SUSTech-Kai-Notes/tree/main/CS217%20Data%20Structures%20and%20Algorithm%20Analysis%20(H)
https://www.sustech.edu.cn/
https://github.com/kaiiiichen/SUSTech-Kai-Notes/wiki
https://github.com/kaiiiichen/SUSTech-Kai-Notes/wiki
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

Contents

1 Getting Started 1

1.1 Foundations of Algorithms . 1

1.1.1 Definitions . 1

1.1.2 Correctness . 1

1.2 The Computational Model . 1

1.3 Insertion Sort . 2

1.3.1 The Concept . 2

1.3.2 The Algorithm . 2

1.4 Correctness via Loop Invariants . 2

1.4.1 Proof of Insertion Sort . 3

1.5 Runtime Analysis . 4

1.5.1 Detailed Cost Breakdown . 4

1.5.2 Best Case Analysis . 5

1.5.3 Worst Case Analysis . 5

2 Runtime and Asymptotic Notation 7

2.1 Recap: Runtime of Insertion Sort . 7

2.1.1 Why Focus on the Worst Case? 7

2.2 Asymptotic Analysis . 7

2.2.1 The Philosophy of Asymptotics 7

2.3 Asymptotic Notations . 8

2.3.1 Big-Theta Notation (Θ): Tight Bound 8

2.3.2 Big-O Notation (O): Upper Bound 8

2.3.3 Big-Omega Notation (Ω): Lower Bound 9

2.3.4 Strict Bounds (o and ω) . 9

2.4 Analogy with Real Numbers . 10

2.5 Properties and Growth Hierarchy . 10

2.5.1 Properties . 10

2.5.2 Common Growth Functions . 10

2.6 Application to Insertion Sort . 11

3 Divide-and-Conquer 12

3.1 The Paradigm Shift . 12

3.1.1 Divide-and-Conquer Strategy . 12

3.1.2 Motivating Example: Binary Search 12

3.2 Merge Sort . 13

3.2.1 The Algorithm . 13

cbna ii ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

3.2.2 The Merge Procedure . 13

3.2.3 Correctness of Merge . 13

3.3 Analysis of Merge Sort . 14

3.3.1 Recurrence Relation . 14

3.3.2 Recursion Tree Visualization . 15

3.3.3 Comparison with Insertion Sort 15

3.4 The Master Theorem . 16

3.4.1 The Watershed Function . 16

3.4.2 The Three Cases . 16

3.4.3 Examples . 17

4 Heapsort 18

4.1 Motivation: Smarter Selection . 18

4.2 The Heap Data Structure . 18

4.2.1 Definition . 18

4.2.2 The Heap Property . 19

4.3 Core Operations . 19

4.3.1 Maintaining the Property: Max-Heapify 19

4.3.2 Building the Heap: Build-Max-Heap 20

4.4 The Heapsort Algorithm . 21

4.4.1 Analysis . 21

4.4.2 Rebuild vs. Repair . 22

4.5 Priority Queues . 22

4.6 Summary . 22

5 Quicksort 23

5.1 The Divide-and-Conquer Paradigm Revisited 23

5.1.1 Structural Comparison . 23

5.2 Partitioning: The Core Mechanism . 23

5.2.1 The Lomuto Partition Scheme . 23

5.2.2 Trace Example . 24

5.2.3 Loop Invariant Visualization . 24

5.3 Rigorous Runtime Analysis . 25

5.3.1 Worst-Case: The Unbalanced Split 25

5.3.2 Best-Case: The Perfect Split . 25

5.3.3 Average-Case: The Intuition of Balance 25

5.3.4 Average-Case: Mathematical Proof 26

5.4 Improvements and Variants . 26

5.4.1 Randomized Quicksort . 26

cbna iii ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

5.4.2 Median-of-3 Partitioning . 26

5.4.3 Handling Duplicates . 27

5.4.4 Dual-Pivot Quicksort . 27

6 Randomisation & Lower Bounds 28

6.1 Randomisation in Algorithm Design . 28

6.1.1 The Motivation . 28

6.1.2 Randomised QuickSort . 28

6.2 Analysis of Expected Runtime . 29

6.2.1 Setup: Indicator Random Variables 29

6.2.2 Linearity of Expectation . 29

6.2.3 The Probability of Comparison 30

6.2.4 Summation and Result . 30

6.3 Lower Bounds for Comparison Sorts . 31

6.3.1 The Comparison Model . 31

6.3.2 Decision Trees . 31

6.3.3 The Lower Bound Theorem . 31

6.4 Summary of Sorting Algorithms . 32

7 Sorting in Linear Time 34

7.1 Breaking the Speed Limit . 34

7.1.1 The Comparison Bottleneck . 34

7.1.2 The Way Out . 34

7.2 Counting Sort . 34

7.2.1 The Algorithm logic . 34

7.2.2 Why Traverse Backwards? (Stability) 35

7.2.3 Complexity Analysis . 35

7.3 Radix Sort . 35

7.3.1 The Algorithm (LSD Approach) 36

7.3.2 Why LSD works (Intuition) . 36

7.3.3 Trace Example . 36

7.4 Advanced Analysis: Breaking the O(n3) Range 36

7.4.1 Attempt 1: Comparison Sort . 37

7.4.2 Attempt 2: Counting Sort . 37

7.4.3 Attempt 3: Radix Sort (Base 10) 37

7.4.4 Attempt 4: Radix Sort (Base n) 37

7.5 Summary Table . 37

cbna iv ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

8 Elementary Data Structures 38

8.1 Foundations: The Limitations of Arrays 38

8.1.1 Data Structures vs. Raw Memory 38

8.1.2 The Array Bottleneck . 38

8.2 Stacks (LIFO) . 39

8.2.1 Philosophy . 39

8.2.2 Array Implementation . 39

8.2.3 Algorithmic Applications . 39

8.3 Queues (FIFO) . 40

8.3.1 Philosophy . 40

8.3.2 Circular Buffer Implementation 40

8.4 Priority Queues . 41

8.5 Linked Lists . 41

8.5.1 Breaking the Contiguity Constraint 41

8.5.2 Operations Analysis . 42

8.6 Summary of Complexities . 42

9 Binary Search Trees 43

9.1 Introduction to Trees . 43

9.1.1 Definitions and Terminology . 43

9.1.2 Inductive Proofs on Trees . 43

9.2 Binary Search Trees (BST) . 44

9.2.1 Tree Walks . 44

9.3 Query Operations . 45

9.3.1 Search . 45

9.3.2 Minimum and Maximum . 45

9.3.3 Successor . 45

9.4 Modifying Operations . 46

9.4.1 Insertion . 46

9.4.2 Deletion . 47

9.5 Performance Analysis . 48

10 AVL Trees 49

10.1 Motivation . 49

10.2 Definition and Properties . 49

10.2.1 AVL Property . 49

10.2.2 Height Analysis . 49

10.3 Rotations . 50

10.3.1 Right Rotation . 50

cbna v ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

10.3.2 Left Rotation . 50

10.4 Insertion . 51

10.4.1 Case 1: Left-Left (LL) . 51

10.4.2 Case 2: Right-Right (RR) . 51

10.4.3 Case 3: Left-Right (LR) . 51

10.4.4 Case 4: Right-Left (RL) . 52

10.5 Deletion . 52

10.5.1 Propagation of Imbalance . 52

10.6 Summary . 52

11 Dynamic Programming 54

11.1 The Paradigm Shift . 54

11.1.1 Motivation: Divide-and-Conquer vs. Dynamic Programming . . . 54

11.2 Motivating Example: Fibonacci Numbers 54

11.2.1 The Naive Recursive Approach 54

11.2.2 The DP Approach (Memoization) 55

11.3 Case Study: Rod Cutting Problem . 55

11.3.1 Problem Definition . 55

11.3.2 Approach 1: Top-Down with Memoization 56

11.3.3 Approach 2: Bottom-Up (Tabulation) 56

11.4 Reconstructing the Solution . 57

11.4.1 Printing the Cuts . 57

11.5 Theoretical Foundations . 58

11.5.1 Optimal Substructure . 58

11.5.2 Overlapping Subproblems . 58

11.6 Summary Comparison . 58

12 Greedy Algorithms 60

12.1 The Philosophy of Greed . 60

12.1.1 Core Concept . 60

12.1.2 Comparison with Dynamic Programming 60

12.2 Case Study: Activity Selection Problem 60

12.2.1 The Problem . 60

12.2.2 The Greedy Strategy . 61

12.2.3 Runtime Analysis . 61

12.3 Theoretical Foundations . 61

12.3.1 Greedy Choice Property . 62

12.3.2 Optimal Substructure . 62

12.4 The Tale of Two Knapsacks . 62

cbna vi ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

12.4.1 Problem Definitions . 62

12.4.2 The Greedy Strategy: Value Density 62

12.4.3 Analysis: Why Greedy Fails for 0-1 Knapsack 62

12.4.4 Analysis: Why Greedy Works for Fractional Knapsack 63

12.5 5. Summary Comparison . 63

13 Elementary Graph Algorithms 64

13.1 Graph Representations . 64

13.1.1 Adjacency Lists . 64

13.1.2 Adjacency Matrix . 64

13.2 Breadth-First Search (BFS) . 64

13.2.1 Algorithm . 64

13.2.2 Analysis . 65

13.3 Depth-First Search (DFS) . 66

13.3.1 Algorithm . 66

13.3.2 Analysis . 67

13.3.3 Edge Classification . 67

13.4 Applications of DFS . 67

13.4.1 Topological Sort . 67

13.4.2 Strongly Connected Components (SCC) 68

14 Depth First Search & Applications 69

14.1 Review of DFS . 69

14.2 Properties of DFS . 70

14.2.1 Parenthesis Structure . 70

14.2.2 White-Path Theorem . 70

14.2.3 Edge Classification . 70

14.3 Applications . 70

14.3.1 Cycle Detection . 70

14.3.2 Topological Sort . 71

14.3.3 Strongly Connected Components (SCC) 71

15 Minimum Spanning Trees and Shortest Paths 73

15.1 Minimum Spanning Trees (MST) . 73

15.1.1 Problem Definition . 73

15.1.2 Generic Greedy Approach . 73

15.2 Kruskal’s Algorithm . 74

15.2.1 Disjoint Set Data Structure . 74

15.2.2 Analysis . 74

15.3 Prim’s Algorithm . 75

cbna vii ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis Contents

15.3.1 Analysis . 76

15.4 Single-Source Shortest Paths . 76

15.4.1 Relaxation . 76

15.5 Dijkstra’s Algorithm . 76

15.5.1 Correctness . 77

15.5.2 Analysis . 78

15.6 Summary of Algorithms . 78

Index 79

cbna viii ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

1 Getting Started

1.1 Foundations of Algorithms

1.1.1 Definitions

DEFINITION 1.1 (Algorithm). An algorithm is a well-defined computational proce-

dure that takes some value, or set of values, as input and produces some value, or set of

values, as output. It acts as a tool for solving a well-specified computational problem.

Problem 1.1 (The Sorting Problem). Input: A sequence of n numbers ⟨a1, a2, ..., an⟩.

Output: A permutation (reordering) ⟨a1′, a2′, ..., an′⟩ of the input sequence such that

a1
′ ≤ a2

′ ≤ · · · ≤ an.

DEFINITION 1.2 (Instance). An instance of a problem consists of the input (satisfying

whatever constraints are imposed in the problem statement) needed to compute a solution.

For example, the sequence (31, 41, 59, 26, 41, 58) is an instance of the sorting problem.

Remark 1.1. We describe algorithms using pseudocode. This serves two purposes:

1. To show that algorithms exist independently of any particular programming language.

2. To focus on ideas and logic rather than syntax issues or error-handling.

1.1.2 Correctness

DEFINITION 1.3 (Correctness). An algorithm is correct if, for every input instance,

it halts with the correct output. A correct algorithm solves the problem.

Ideally, algorithms should be accompanied by a proof of correctness, rather than just

testing on a few instances.

1.2 The Computational Model

To analyze the running time of algorithms effectively, we need a model that abstracts away

specific hardware details (like clock rate, memory hierarchy, or multi-core architecture).

cbna 1 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

DEFINITION 1.4 (RAM Model). The Random-Access Machine (RAM) model is

a generic model of computation where instructions are executed one after another (no

concurrent operations).

Property 1.1 (Elementary Operations). The RAM model assumes that each elementary

operation takes the same amount of time (a constant independent of the problem size).

These operations include:

• Arithmetic: Add, subtract, multiply, divide, remainder, floor, ceiling.

• Data Movement: Variable assignments (storing, retrieving), copy.

• Logical: Comparisons, shifts, logical operations.

• Control: Conditional and unconditional branches (loops), subroutine calls and

returns.

1.3 Insertion Sort

1.3.1 The Concept

Insertion Sort works the way many people sort a hand of playing cards.

• We start with an empty left hand and the cards face down on the table.

• We remove one card at a time from the table and insert it into the correct position

in the left hand.

• To find the correct position for a card, we compare it with each of the cards already

in the hand, from right to left.

• At all times, the cards held in the left hand are sorted.

1.3.2 The Algorithm

1.4 Correctness via Loop Invariants

To prove that an algorithm (especially one with loops) is correct, we use the technique of

Loop Invariants.

cbna 2 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

Algorithm 1 Insertion Sort

1: procedure InsertionSort(A)
2: for j = 2 to A.length do ▷ Iterate from the second element
3: key = A[j]
4: ▷ Insert A[j] into the sorted sequence A[1 . . . j − 1]
5: i = j − 1
6: while i > 0 and A[i] > key do
7: A[i+ 1] = A[i] ▷ Shift element to the right
8: i = i− 1
9: end while
10: A[i+ 1] = key ▷ Insert key into correct position
11: end for
12: end procedure

DEFINITION 1.5 (Loop Invariant). A loop invariant is a statement that is always true

and reflects the progress of the algorithm towards producing a correct output.

To use a loop invariant to prove correctness, we must show three things:

1. Initialization: The invariant is true before the first iteration of the loop.

2. Maintenance: If the invariant is true before an iteration of the loop, it remains

true before the next iteration.

3. Termination: When the loop terminates, the invariant provides a useful property

that helps show that the algorithm is correct.

1.4.1 Proof of Insertion Sort

THEOREM 1.2. Algorithm 1 correctly sorts the array A.

Proof. We use the following loop invariant:

”At the start of each iteration of the for loop (lines 1-8), the subarray A[1 . . . j−

1] consists of the elements originally in A[1 . . . j − 1], but in sorted order.”

Initialization: We start with j = 2. The subarray A[1 . . . j − 1] is A[1 . . . 1], which

consists of the single element A[1]. A single element is trivially sorted. Thus, the invariant

holds.

Maintenance: The body of the for loop works by moving A[j − 1], A[j − 2], . . . one

position to the right until the proper position for A[j] (stored in key) is found. The key

cbna 3 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

is then placed into this position. At this point, the subarray A[1 . . . j] consists of the

elements originally in A[1 . . . j], but in sorted order. Incrementing j for the next iteration

preserves the invariant.

Termination: The loop terminates when j = n+1. Substituting n+1 for j in the invariant,

we have that the subarray A[1 . . . n] consists of the elements originally in A[1 . . . n], but

in sorted order. Since A[1 . . . n] is the entire array, the algorithm is correct.

1.5 Runtime Analysis

We analyze the running time T (n) by summing the cost of each statement multiplied by

the number of times it is executed.

• Let ck be the cost of executing line k.

• Let n be the size of the array A.

• Let tj be the number of times the while loop test is executed for a given value of j.

1.5.1 Detailed Cost Breakdown

• Line 1 (for loop header): Executed n times (checking j from 2 to n+ 1). Cost: c1n.

• Line 2 (key = A[j]): Executed n− 1 times. Cost: c2(n− 1).

• Line 4 (i = j − 1): Executed n− 1 times. Cost: c4(n− 1).

• Line 5 (while test): Executed
∑n

j=2 tj times. Cost: c5
∑n

j=2 tj.

• Line 6 (loop body, shift): Executed
∑n

j=2(tj − 1) times. Cost: c6
∑n

j=2(tj − 1).

• Line 7 (loop body, decrement): Executed
∑n

j=2(tj − 1) times. Cost: c7
∑n

j=2(tj − 1).

• Line 8 (assignment): Executed n− 1 times. Cost: c8(n− 1).

The total running time T (n) is:

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1) + c7

n∑
j=2

(tj − 1) + c8(n− 1)

cbna 4 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

1.5.2 Best Case Analysis

The best case occurs when the array is already sorted. In this scenario, A[i] ≤ key

immediately for every j. Thus, the while loop test is executed only once (tj = 1), and

the loop body is never executed.

Substituting tj = 1:
n∑

j=2

tj =
n∑

j=2

1 = n− 1

n∑
j=2

(tj − 1) = 0

The runtime becomes:

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5(n− 1) + c8(n− 1)

T (n) = (c1 + c2 + c4 + c5 + c8)n− (c2 + c4 + c5 + c8)

This is a linear function of n: T (n) = an+ b = Θ(n).

1.5.3 Worst Case Analysis

The worst case occurs when the array is reverse sorted. In this scenario, we must compare

the key with every element in the sorted subarray A[1 . . . j − 1]. Thus, tj = j.

We use the following summation formulas:

n∑
j=2

j =
n(n+ 1)

2
− 1

n∑
j=2

(j − 1) =
n(n− 1)

2

Substituting these into the total runtime equation:

T (n) = c1n+c2(n−1)+c4(n−1)+c5

(
n(n+ 1)

2
− 1

)
+(c6+c7)

(
n(n− 1)

2

)
+c8(n−1)

cbna 5 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 1 Getting Started

Grouping terms by powers of n:

T (n) =
(c5
2
+

c6
2
+

c7
2

)
n2 +

(
c1 + c2 + c4 +

c5
2
− c6

2
− c7

2
+ c8

)
n− (c2 + c4 + c5 + c8)

This is a quadratic function of n: T (n) = an2 + bn+ c = Θ(n2).

cbna 6 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 2 Runtime and Asymptotic Notation

2 Runtime and Asymptotic Notation

2.1 Recap: Runtime of Insertion Sort

In the previous lecture, we derived the running time function T (n) for Insertion Sort on

an input of size n. The exact formula depended on specific costs ci for each machine

instruction:

T (n) = c1n+ c2(n− 1) + c4(n− 1) + c5

n∑
j=2

tj + . . .

This level of detail is often too messy and hardware-dependent. We observed two extreme

cases:

• Best Case (Sorted Array): T (n) = an+ b (Linear).

• Worst Case (Reverse Sorted Array): T (n) = an2 + bn+ c (Quadratic).

2.1.1 Why Focus on the Worst Case?

1. Guarantee: The worst-case runtime gives us an absolute upper bound. The

algorithm will never take longer than this.

2. Frequency: For some algorithms, the worst case occurs fairly often (e.g., searching

for a non-existent item in a database).

3. Average Case: Often, the ”average” case is roughly as bad as the worst case. For

Insertion Sort, the average case is also quadratic.

2.2 Asymptotic Analysis

2.2.1 The Philosophy of Asymptotics

To compare algorithms effectively, we need a metric that is independent of:

• The specific machine (CPU speed, memory architecture).

• The programming language or compiler efficiency.

• Small input sizes (where most algorithms are fast enough).

cbna 7 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 2 Runtime and Asymptotic Notation

Key Idea: We focus on the rate of growth of the running time as the input size n

approaches infinity (n→∞).

• We ignore lower-order terms: For large n, the highest power dominates (e.g., in

n2 + 100n, the n2 term is overwhelmingly larger).

• We ignore leading constants: Constants depend on hardware. We want to know

if the algorithm scales linearly, quadratically, etc.

2.3 Asymptotic Notations

We use five standard notations to describe the asymptotic behavior of functions. Let f(n)

be the algorithm’s runtime and g(n) be a reference function.

2.3.1 Big-Theta Notation (Θ): Tight Bound

DEFINITION 2.1 (Big-Theta Θ). For a given function g(n), Θ(g(n)) is the set of

functions:

Θ(g(n)) = {f(n) : ∃c1, c2 > 0 and n0 ≥ 0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

Intuition: For sufficiently large n, f(n) is ”sandwiched” between two constant multiples

of g(n).

• We say f(n) grows at the same rate as g(n).

• Example: 2n2 + 3n+ 1 = Θ(n2).

• Note: We often write f(n) = Θ(g(n)) (equality) to mean f(n) ∈ Θ(g(n)) (set

membership).

2.3.2 Big-O Notation (O): Upper Bound

DEFINITION 2.2 (Big-O O). For a given function g(n), O(g(n)) is the set of functions:

O(g(n)) = {f(n) : ∃c > 0 and n0 ≥ 0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

cbna 8 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 2 Runtime and Asymptotic Notation

Intuition: f(n) grows no faster than g(n). It gives an asymptotic ceiling.

• Note: f(n) = Θ(g(n)) =⇒ f(n) = O(g(n)).

• Ideally, we want the tightest upper bound, but loose bounds are technically correct

(e.g., 2n = O(n2) is true, but weak).

2.3.3 Big-Omega Notation (Ω): Lower Bound

DEFINITION 2.3 (Big-Omega Ω). For a given function g(n), Ω(g(n)) is the set of

functions:

Ω(g(n)) = {f(n) : ∃c > 0 and n0 ≥ 0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

Intuition: f(n) grows at least as fast as g(n). It gives an asymptotic floor.

THEOREM 2.1 (Relationship Theorem). For any two functions f(n) and g(n):

f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) AND f(n) = Ω(g(n))

2.3.4 Strict Bounds (o and ω)

While O and Ω correspond to ≤ and ≥, the notations o and ω correspond to < and >.

DEFINITION 2.4 (Little-o o). f(n) = o(g(n)) if for any constant c > 0, there exists

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0. Alternatively defined by limits:

lim
n→∞

f(n)

g(n)
= 0

Meaning: f(n) becomes insignificant relative to g(n) as n grows.

DEFINITION 2.5 (Little-omega ω). f(n) = ω(g(n)) if for any constant c > 0, there

exists n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0. Alternatively:

lim
n→∞

f(n)

g(n)
=∞

cbna 9 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 2 Runtime and Asymptotic Notation

Meaning: f(n) grows strictly faster than g(n).

2.4 Analogy with Real Numbers

We can map the asymptotic relationships between functions to comparison operators for

real numbers:

Notation Analogy Intuition
f(n) = O(g(n)) f ≤ g Upper bound (tight or loose)
f(n) = Ω(g(n)) f ≥ g Lower bound (tight or loose)
f(n) = Θ(g(n)) f = g Tight bound (equal growth rate)
f(n) = o(g(n)) f < g Strictly smaller growth
f(n) = ω(g(n)) f > g Strictly larger growth

Table 1: Comparison of Asymptotic Notations

2.5 Properties and Growth Hierarchy

2.5.1 Properties

• Transitivity: If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then f(n) = Θ(h(n)). (Holds

for all 5 notations).

• Reflexivity: f(n) = Θ(f(n)). (Holds for O,Ω).

• Symmetry: f(n) = Θ(g(n)) ⇐⇒ g(n) = Θ(f(n)).

• Transpose Symmetry: f(n) = O(g(n)) ⇐⇒ g(n) = Ω(f(n)).

2.5.2 Common Growth Functions

Ordered from slowest to fastest growth:

1. O(1): Constant time.

2. O(lg n): Logarithmic time.

3. O(
√
n): Square root.

4. O(n): Linear time.

5. O(n lg n): Linearithmic (often seen in efficient sorting).

6. O(n2): Quadratic.

cbna 10 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 2 Runtime and Asymptotic Notation

7. O(n3): Cubic.

8. O(2n): Exponential.

9. O(n!): Factorial.

Remark 2.1 (Dominance Rules). • Polylogarithms vs Polynomials: For any con-

stants a, b > 0, (lg n)a = o(nb). (Any positive polynomial power beats any polylog).

• Polynomials vs Exponentials: For any constants a > 0, b > 1, na = o(bn). (Any

exponential with base > 1 beats any polynomial).

2.6 Application to Insertion Sort

Let T (n) be the running time of Insertion Sort on an array of size n.

• Worst Case: Occurs when the array is reverse sorted.

T (n) = an2 + bn+ c =⇒ T (n) = Θ(n2)

• Best Case: Occurs when the array is already sorted.

T (n) = an+ b =⇒ T (n) = Θ(n)

Note 2.1 (Common Misconception). It is incorrect to say ”The running time of Insertion

Sort is Θ(n2)”. Why? Because for the best-case input, the runtime is linear, not quadratic.

• Correct Statement 1: The worst-case running time is Θ(n2).

• Correct Statement 2: For any input, the running time is O(n2) (upper bound)

and Ω(n) (lower bound).

cbna 11 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

3 Divide-and-Conquer

3.1 The Paradigm Shift

In previous lectures, we explored **Insertion Sort**, which follows an **Incremental

Approach**: we process elements one by one and insert them into a growing sorted subarray.

To break the Θ(n2) barrier, we need a fundamentally different strategy: **Divide-and-

Conquer**.

3.1.1 Divide-and-Conquer Strategy

This paradigm involves three recursive steps:

1. Divide: Break the problem into several smaller subproblems that are similar to the

original problem but smaller in size.

2. Conquer: Solve the subproblems recursively. If the subproblem sizes are small

enough (the base case), solve them directly.

3. Combine: Merge the solutions to the subproblems to create a solution to the

original problem.

3.1.2 Motivating Example: Binary Search

Consider finding a number x in a sorted array of size n.

• Linear Search: Scanning from start to end takes Θ(n) in the worst case.

• Binary Search: Check the middle element. If x is smaller, discard the right half;

otherwise, discard the left half.

T (n) = T (n/2) + Θ(1) =⇒ T (n) = Θ(lg n)

Insight: By dividing the problem size by a constant factor (2) at each step, we

exponentially reduce the work, achieving logarithmic complexity.

cbna 12 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

3.2 Merge Sort

Merge Sort is the archetypal divide-and-conquer sorting algorithm.

3.2.1 The Algorithm

1. Divide: Split the n-element sequence into two subsequences of size n/2.

2. Conquer: Recursively sort the two subsequences using Merge Sort.

3. Combine: Merge the two sorted subsequences to produce the final sorted answer.

Base Case: A sequence of length 1 is trivially sorted.

3.2.2 The Merge Procedure

The core logic lies in the Combine step. The procedure Merge(A, p, q, r) assumes

that the subarrays A[p . . . q] and A[q + 1 . . . r] are already sorted. It merges them into a

single sorted subarray A[p . . . r].

Mechanism (Two Pointers): We view the two subarrays as piles of cards face up.

We compare the top cards of each pile, pick the smaller one, place it in the output pile,

and repeat. To avoid checking for empty piles constantly, we can use a **sentinel value**

(∞) at the end of each subarray.

Runtime of Merge: The procedure performs a constant amount of work for each element

in the subarrays. Specifically, the for loop runs n = r − p+ 1 times.

Tmerge(n) = Θ(n)

3.2.3 Correctness of Merge

We prove correctness using a **Loop Invariant**:

At the start of each iteration of the for loop, the subarray A[p . . . k−1] contains

the k − p smallest elements of L and R, in sorted order. Furthermore, L[i]

and R[j] are the smallest elements of their arrays that have not been copied

cbna 13 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

Algorithm 2 Merge Procedure

1: procedure Merge(A, p, q, r)
2: n1 = q − p+ 1
3: n2 = r − q
4: Let L[1 . . . n1 + 1] and R[1 . . . n2 + 1] be new arrays
5: for i = 1 to n1 do
6: L[i] = A[p+ i− 1]
7: end for
8: for j = 1 to n2 do
9: R[j] = A[q + j]
10: end for
11: L[n1 + 1] =∞; R[n2 + 1] =∞ ▷ Sentinels
12: i = 1; j = 1
13: for k = p to r do
14: if L[i] ≤ R[j] then
15: A[k] = L[i]
16: i = i+ 1
17: else
18: A[k] = R[j]
19: j = j + 1
20: end if
21: end for
22: end procedure

back to A.

• Initialization: For k = p, the subarray A[p . . . p − 1] is empty, which trivially

satisfies the invariant.

• Maintenance: Suppose L[i] ≤ R[j]. Then L[i] is the smallest uncopied element. We

copy it to A[k]. Now A[p . . . k] contains the k−p+1 smallest elements. Incrementing

k and i maintains the invariant.

• Termination: When the loop ends, k = r + 1. The subarray A[p . . . r] contains all

elements (except sentinels) in sorted order.

3.3 Analysis of Merge Sort

3.3.1 Recurrence Relation

Let T (n) be the time to sort n numbers.

• Divide: Computing the middle index takes constant time Θ(1).

cbna 14 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

• Conquer: We recursively solve two subproblems, each of size n/2, contributing

2T (n/2).

• Combine: The Merge procedure takes time linear in the number of elements, Θ(n).

Thus, the recurrence is:

T (n) =


Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

3.3.2 Recursion Tree Visualization

To solve T (n) = 2T (n/2) + cn, visualize a tree:

• Top Level: Cost cn.

• Level 1: Two subproblems of size n/2. Cost 2× c(n/2) = cn.

• Level 2: Four subproblems of size n/4. Cost 4× c(n/4) = cn.

• . . .

• Depth: The tree splits until n = 1. The height is lg n.

• Total Cost: There are lg n+ 1 levels, each costing cn.

Total ≈ cn× lg n = Θ(n lg n)

3.3.3 Comparison with Insertion Sort

• Time: Merge Sort is Θ(n lg n) in the worst, best, and average cases. This is

asymptotically faster than Insertion Sort’s worst case Θ(n2).

• Space: Merge Sort is not in-place. It requires Θ(n) auxiliary space for the ‘L‘ and

‘R‘ arrays in the ‘Merge‘ step. Insertion Sort is in-place (O(1) space). This is the

main drawback of Merge Sort.

cbna 15 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

3.4 The Master Theorem

The Master Theorem provides a ”cookbook” method to solve recurrences of the form:

T (n) = aT (n/b) + f(n)

where a ≥ 1 (number of subproblems), b > 1 (shrinkage factor), and f(n) (cost of

divide/combine).

3.4.1 The Watershed Function

We compare the driving function f(n) with the watershed function nlogb a.

• nlogb a represents the rate of growth of the leaves (the cost of the base cases).

• f(n) represents the cost of the work done at the root (divide and combine).

It’s a ”tug-of-war” between the root work and the leaf work.

3.4.2 The Three Cases

THEOREM 3.1 (Master Theorem). 1. Case 1 (Leaves Dominate): If f(n) =

O(nlogb a−ϵ) for some ϵ > 0, then the recursion cost dominates:

T (n) = Θ(nlogb a)

2. Case 2 (Balanced): If f(n) = Θ(nlogb a lgk n) (typically k = 0), then the cost is

distributed evenly across levels:

T (n) = Θ(nlogb a lgk+1 n)

3. Case 3 (Root Dominates): If f(n) = Ω(nlogb a+ϵ) for some ϵ > 0, and if the

regularity condition af(n/b) ≤ cf(n) holds, then the root work dominates:

T (n) = Θ(f(n))

cbna 16 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 3 Divide-and-Conquer

3.4.3 Examples

Example 1: Merge Sort

T (n) = 2T (n/2) + n

• a = 2, b = 2, f(n) = n.

• Watershed: nlog2 2 = n1 = n.

• Compare: f(n) = Θ(Watershed). This is Case 2 (with k = 0).

• Result: T (n) = Θ(n lg n).

Example 2

T (n) = 9T (n/3) + n

• a = 9, b = 3, f(n) = n.

• Watershed: nlog3 9 = n2.

• Compare: f(n) = n = O(n2−ϵ). Watershed dominates. This is Case 1.

• Result: T (n) = Θ(n2).

Example 3

T (n) = 3T (n/4) + n lg n

• a = 3, b = 4, f(n) = n lg n.

• Watershed: nlog4 3 ≈ n0.793.

• Compare: f(n) = Ω(n0.793+ϵ). Root dominates. This is Case 3.

• Regularity: 3(n/4) lg(n/4) ≤ cn lg n holds for c ≈ 3/4.

• Result: T (n) = Θ(n lg n).

cbna 17 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 4 Heapsort

4 Heapsort

4.1 Motivation: Smarter Selection

To understand Heapsort, let’s revisit Selection Sort.

• Selection Sort Strategy: Repeatedly find the maximum element in the remaining

unsorted array and move it to the correct position.

• The Inefficiency: Finding the maximum takes Θ(n) time because we scan the

array linearly. We do this n times, leading to Θ(n2).

• The Waste: In every iteration, Selection Sort ”forgets” all the comparisons it made.

It starts from scratch.

Heapsort’s Insight: Can we use a data structure to ”memorize” the comparison

results?

• Instead of scanning linearly, we organize elements so that finding the maximum is

trivial (O(1)).

• Removing the maximum and ”repairing” the structure should be fast (O(lg n)).

• This turns the ”Rebuild” process (Selection Sort) into a ”Repair” process (Heapsort).

4.2 The Heap Data Structure

4.2.1 Definition

A Heap (specifically, a binary heap) is an array object that we view as a nearly complete

binary tree.

• Structure: The tree is completely filled on all levels except possibly the lowest,

which is filled from the left up to a point.

• Implicit Representation: We don’t use pointers. The tree structure is implicit in

the array indices.

For a node at index i:

• Parent(i) = ⌊i/2⌋

cbna 18 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 4 Heapsort

• Left(i) = 2i

• Right(i) = 2i+ 1

4.2.2 The Heap Property

There are two kinds of heaps:

1. Max-Heap: For every node i other than the root:

A[Parent(i)] ≥ A[i]

The largest element is stored at the root. (Used for Heapsort).

2. Min-Heap: For every node i other than the root:

A[Parent(i)] ≤ A[i]

The smallest element is stored at the root. (Used for Priority Queues).

4.3 Core Operations

4.3.1 Maintaining the Property: Max-Heapify

Problem: Suppose the binary trees rooted at Left(i) and Right(i) are max-heaps, but

A[i] might be smaller than its children, violating the max-heap property. Solution: Let

the value at A[i] ”float down” until the property is restored.

Runtime: The running time T (n) depends on the height of the node h. In the worst

case, we traverse from the root to a leaf.

T (n) = O(h) = O(lg n)

cbna 19 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 4 Heapsort

Algorithm 3 Max-Heapify

1: procedure Max-Heapify(A, i)
2: l = Left(i)
3: r = Right(i)
4: largest = i
5: if l ≤ A.heap-size and A[l] > A[largest] then
6: largest = l
7: end if
8: if r ≤ A.heap-size and A[r] > A[largest] then
9: largest = r
10: end if
11: if largest ̸= i then
12: Exchange A[i] with A[largest]
13: Max-Heapify(A, largest) ▷ Recursive call on the affected subtree
14: end if
15: end procedure

4.3.2 Building the Heap: Build-Max-Heap

We can convert an arbitrary array A[1 . . . n] into a max-heap by calling Max-Heapify in a

bottom-up manner. Observation: The elements in the subarray A[⌊n/2⌋+ 1 . . . n] are

all leaves. Leaves are trivially max-heaps of size 1. We start from their parents and work

up to the root.

Algorithm 4 Build-Max-Heap

1: procedure Build-Max-Heap(A)
2: A.heap-size = A.length
3: for i = ⌊A.length/2⌋ downto 1 do
4: Max-Heapify(A, i)
5: end for
6: end procedure

Runtime Analysis (Crucial): A naive bound is O(n lg n) because we call Max-Heapify

O(n) times. However, this is not tight.

• Most nodes have small heights.

• Max-Heapify takes time proportional to the height h of the node.

• A heap of size n has at most ⌈n/2h+1⌉ nodes of height h.

Total work:
⌊lgn⌋∑
h=0

⌈ n

2h+1

⌉
O(h) = O

n

⌊lgn⌋∑
h=0

h

2h


cbna 20 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 4 Heapsort

Using the summation formula
∑∞

h=0
h
2h

= 2, we get:

T (n) = O(n · 2) = O(n)

Conclusion: We can build a heap in linear time.

4.4 The Heapsort Algorithm

Now we combine the pieces.

1. Build a max-heap from the input array. (O(n))

2. The maximum element is at A[1]. Swap it with A[n] (placing it in its final sorted

position).

3. Decrement the heap size (discarding the sorted element).

4. The new root likely violates the heap property. Call Max-Heapify to fix it. (O(lg n))

5. Repeat until the heap size is 1.

Algorithm 5 Heapsort

1: procedure Heapsort(A)
2: Build-Max-Heap(A)
3: for i = A.length downto 2 do
4: Exchange A[1] with A[i]
5: A.heap-size = A.heap-size− 1
6: Max-Heapify(A, 1)
7: end for
8: end procedure

4.4.1 Analysis

• Build-Heap: O(n).

• Loop: Executes n− 1 times.

• Heapify: Takes O(lg n) each time.

• Total Runtime: O(n) + (n− 1)O(lg n) = O(n lg n).

cbna 21 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 4 Heapsort

4.4.2 Rebuild vs. Repair

• Selection Sort (Rebuild): After extracting the max, it sees the remaining n− 1

elements as a chaotic bag. It spends O(n) to find the next max.

• Heapsort (Repair): After extracting the max, it knows the remaining structure is

almost a valid heap. Only one path from root to leaf is violated. It spends O(lg n)

to repair this specific violation.

4.5 Priority Queues

Heaps are the underlying data structure for efficient Priority Queues. A Max-Priority

Queue supports:

• Insert(S, x): Insert element x into set S. (O(lg n))

• Maximum(S): Return the element with the largest key. (O(1))

• Extract-Max(S): Remove and return the element with the largest key. (O(lg n))

• Increase-Key(S, x, k): Increase the value of element x’s key to k. (O(lg n) -

element floats up).

4.6 Summary

Algorithm Time (Worst) Time (Best) Space Stable?
Insertion Sort O(n2) O(n) O(1) Yes
Merge Sort O(n lg n) O(n lg n) O(n) Yes
Heapsort O(n lg n) O(n lg n) O(1) No

Table 2: Heapsort combines the efficiency of Merge Sort with the space efficiency of
Insertion Sort.

cbna 22 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 5 Quicksort

5 Quicksort

5.1 The Divide-and-Conquer Paradigm Revisited

Quicksort is a sorting algorithm that fits within the divide-and-conquer paradigm, but it

represents a philosophical mirror image to Merge Sort.

5.1.1 Structural Comparison

• Merge Sort:

– Divide: Trivial. Simply slice the indices in half (O(1)).

– Conquer: Recursively sort both halves.

– Combine: Hard. The heavy lifting is done here, merging two sorted lists

(O(n)).

• Quicksort:

– Divide: Hard. The heavy lifting is done here via Partition. We rearrange

elements relative to a pivot (O(n)).

– Conquer: Recursively sort the subarrays defined by the partition.

– Combine: Trivial. No work is needed; the array is sorted in place (O(1)).

5.2 Partitioning: The Core Mechanism

The heart of Quicksort is the Partition procedure. It selects a pivot element and

rearranges the array so that:

• Elements smaller than or equal to the pivot are on the left.

• Elements larger than the pivot are on the right.

• The pivot is placed in its correct sorted position.

5.2.1 The Lomuto Partition Scheme

We maintain two pointers to define dynamic regions in the array:

cbna 23 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 5 Quicksort

• i: The boundary of the ”Small Region” (elements ≤ x).

• j: The scanning pointer (current element being inspected).

Algorithm 6 Partition (A, p, r)

1: procedure Partition(A, p, r)
2: x = A[r] ▷ Select the last element as pivot
3: i = p− 1 ▷ Small region is initially empty
4: for j = p to r − 1 do ▷ Scan the array
5: if A[j] ≤ x then
6: i = i+ 1 ▷ Expand the small region
7: Exchange A[i] with A[j] ▷ Swap element into the small region
8: end if
9: end for
10: Exchange A[i+ 1] with A[r] ▷ Place pivot between regions
11: return i+ 1 ▷ Return pivot index
12: end procedure

5.2.2 Trace Example

Let’s trace the execution on the array A = [2, 8, 7, 1, 3, 5, 6, 4].

• Setup: Pivot x = 4. i starts at index 0 (before array).

• j=1 (2): 2 ≤ 4. i→ 1. Swap A[1]↔ A[1]. Array: [2, 8, 7, . . .].

• j=2 (8): 8 > 4. No swap.

• j=3 (7): 7 > 4. No swap.

• j=4 (1): 1 ≤ 4. i→ 2. Swap A[2](8)↔ A[4](1). Array: [2, 1, 7, 8, 3, . . .].

• j=5 (3): 3 ≤ 4. i→ 3. Swap A[3](7)↔ A[5](3). Array: [2, 1, 3, 8, 7, . . .].

• End: Swap pivot A[8](4) with A[i+ 1](A[4] = 8).

• Result: [2, 1, 3,4, 7, 5, 6, 8].

Observe: Left of 4 are {2, 1, 3} (all ≤ 4). Right of 4 are {7, 5, 6, 8} (all > 4).

5.2.3 Loop Invariant Visualization

At the start of each iteration j:

1. A[p . . . i] ≤ x (Known Small)

2. A[i+ 1 . . . j − 1] > x (Known Large)

3. A[j . . . r − 1] (Unknown)

cbna 24 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 5 Quicksort

4. A[r] = x (Pivot)

5.3 Rigorous Runtime Analysis

5.3.1 Worst-Case: The Unbalanced Split

The worst case occurs when the partition routine produces one subproblem with n− 1

elements and one with 0 elements.

• Scenario: Input is already sorted (1, 2, . . . , n) or reverse sorted. Pivot (last element)

is always an extreme value.

• Recurrence: T (n) = T (n− 1) + T (0) + Θ(n) = T (n− 1) + cn.

• Summation: T (n) =
∑n

k=1 ck = cn(n+1)
2

= Θ(n2).

• Visual: The recursion tree is a ”linked list” of height n.

5.3.2 Best-Case: The Perfect Split

• Scenario: Pivot is always the median.

• Recurrence: T (n) = 2T (n/2) + cn.

• Solution: Θ(n lg n) (Master Theorem Case 2).

5.3.3 Average-Case: The Intuition of Balance

Even a 9-to-1 split yields O(n lg n).

T (n) = T (n/10) + T (9n/10) + cn

The tree height is log10/9 n ≈ lg n. Since the work at each level is ≤ cn, the total is

O(n lg n).

cbna 25 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 5 Quicksort

5.3.4 Average-Case: Mathematical Proof

Assume all permutations are equally likely. The pivot rank is uniformly distributed in

[0, n− 1].

T (n) =
1

n

n−1∑
k=0

(T (k) + T (n− k − 1)) + Θ(n)

By symmetry:

T (n) =
2

n

n−1∑
k=0

T (k) + Θ(n)

We suspect T (n) ≤ an lg n. Substituting this into the sum:

n−1∑
k=0

k lg k ≤
ˆ n

2

x lnx dx ≈ n2 lnn

2
− n2

4

Substituting back into the expression for T (n) confirms the O(n lg n) bound.

5.4 Improvements and Variants

5.4.1 Randomized Quicksort

Problem: A fixed pivot (e.g., A[r]) is vulnerable to specific input patterns (like sorted

arrays). Solution: Pick a pivot index randomly from [p, r]. Swap A[random] with A[r]

before partitioning.

• Effect: The worst case is no longer determined by the input order, but by the

random number generator (extremely unlikely).

• Expected Time: Θ(n lg n) for any input.

5.4.2 Median-of-3 Partitioning

Approximation of the true median. Select the pivot as the median of:

{A[p], A[(p+ r)/2], A[r]}

cbna 26 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 5 Quicksort

This reduces the probability of bad splits and guards against sorted inputs without full

randomization overhead.

5.4.3 Handling Duplicates

Standard Quicksort can degrade to O(n2) if all elements are equal. Improvement: 3-Way

Partitioning (Dutch National Flag problem). Split array into: {< x}, {= x}, {> x}.

Recursion only continues on the < x and > x parts.

5.4.4 Dual-Pivot Quicksort

(Used in Java’s Arrays.sort for primitives). Uses two pivots (p1, p2) to split the array

into three segments:

{< p1}, {p1 ≤ · · · ≤ p2}, {> p2}

This reduces the height of the recursion tree and performs fewer memory accesses on

average.

cbna 27 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

6 Randomisation & Lower Bounds

6.1 Randomisation in Algorithm Design

6.1.1 The Motivation

In previous lectures, we saw that QuickSort is efficient on average but suffers from a Θ(n2)

worst-case scenario. This worst case is triggered by specific input patterns (e.g., sorted or

reverse-sorted arrays) when using a deterministic pivot (like the first or last element).

The Problem: A deterministic algorithm is vulnerable. A malicious adversary can

construct an input that always triggers the worst case.

The Solution: Introduce randomness. Instead of assuming the input is random

(Average Case Analysis), we make the algorithm itself random (Randomized Algorithm).

• Goal: Ensure that the algorithm runs efficiently for all inputs.

• Philosophy: By picking pivots randomly, we shift the dependency. The runtime

no longer depends on the input order but on the sequence of random choices. No

specific input can force the worst-case behavior.

6.1.2 Randomised QuickSort

The only change from standard QuickSort is the pivot selection. We choose a pivot

uniformly at random from the subarray A[p . . . r].

Algorithm 7 Randomised Partition

1: procedure Randomised-Partition(A, p, r)
2: i = Random(p, r) ▷ Pick i ∈ [p, r] uniformly
3: Exchange A[r] with A[i] ▷ Move random pivot to the end
4: return Partition(A, p, r) ▷ Call standard partition
5: end procedure

cbna 28 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

Algorithm 8 Randomised QuickSort

1: procedure Randomised-QuickSort(A, p, r)
2: if p < r then
3: q = Randomised-Partition(A, p, r)
4: Randomised-QuickSort(A, p, q − 1)
5: Randomised-QuickSort(A, q + 1, r)
6: end if
7: end procedure

6.2 Analysis of Expected Runtime

For a randomized algorithm, we analyze the Expected Running Time E[T (n)]. We

count the number of comparisons, as this dominates the runtime.

6.2.1 Setup: Indicator Random Variables

Let X be the total number of comparisons. Let the sorted elements of the array be

z1 < z2 < · · · < zn. We define an indicator random variable Xij for any pair i < j:

Xij = I{zi is compared to zj} =


1 if zi and zj are compared

0 otherwise

The total number of comparisons is the sum of all pairs:

X =
n−1∑
i=1

n∑
j=i+1

Xij

6.2.2 Linearity of Expectation

A powerful property of expectation is that the expectation of a sum is the sum of

expectations, even if the variables are dependent.

E[X] = E

[
n−1∑
i=1

n∑
j=i+1

Xij

]
=

n−1∑
i=1

n∑
j=i+1

E[Xij]

Since E[Xij] = Pr(zi is compared to zj), we just need to find this probability.

cbna 29 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

6.2.3 The Probability of Comparison

Critical Insight: When are two elements zi and zj compared?

• Elements are compared only when one of them is chosen as a pivot.

• Once a pivot x is chosen, all other elements are compared to x and then separated

into different sets (< x and > x).

• Consider the set of elements Zij = {zi, zi+1, . . . , zj}.

• If any element x ∈ Zij such that zi < x < zj is chosen as a pivot before zi or zj,

then zi and zj will be separated into different subproblems and never compared.

• Thus, zi and zj are compared if and only if the first element selected as a pivot from

the set Zij is either zi or zj.

The set Zij has j − i+1 elements. Since pivots are chosen uniformly at random, every

element in Zij has an equal chance (1/(j − i+ 1)) of being the first one picked. There are

2 favorable outcomes (zi or zj).

Pr(zi is compared to zj) =
2

j − i+ 1

6.2.4 Summation and Result

Substituting this back into the expectation sum:

E[X] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

Let k = j − i (the distance between elements). As j goes from i+ 1 to n, k goes from 1

to n− i.

E[X] =
n−1∑
i=1

n−i∑
k=1

2

k + 1
<

n−1∑
i=1

n∑
k=1

2

k

The inner sum is the Harmonic series Hn ≈ lnn.

E[X] <
n−1∑
i=1

2 lnn = 2(n− 1) lnn = O(n log n)

cbna 30 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

Conclusion: The expected runtime of Randomized QuickSort is O(n log n).

6.3 Lower Bounds for Comparison Sorts

We have seen several algorithms (MergeSort, HeapSort) with O(n log n) worst-case time.

Can we do better? Can we sort in O(n)?

6.3.1 The Comparison Model

We restrict our analysis to Comparison Sorts: algorithms that only gain information

about the input sequence by comparing pairs of elements (ai < aj, etc.). We cannot

inspect the values themselves or use them as array indices.

6.3.2 Decision Trees

Any comparison sort can be modeled abstractly as a Decision Tree.

• Root: The first comparison made by the algorithm.

• Internal Nodes: Comparisons ai : aj.

• Edges: The result of the comparison (Left: ≤, Right: >).

• Leaves: A permutation of the input elements (the final sorted order).

An execution of the algorithm corresponds to a path from the root to a leaf. The length of

the path is the number of comparisons. The height of the tree is the worst-case number

of comparisons.

6.3.3 The Lower Bound Theorem

THEOREM 6.1. Any comparison sort algorithm requires Ω(n log n) comparisons in the

worst case.

Proof. Let the decision tree have height h and L leaves.

1. Necessary Leaves: There are n! possible permutations of n distinct elements. For

the algorithm to be correct, it must be able to produce any of these n! permutations

cbna 31 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

as output. Thus, the tree must have at least n! reachable leaves:

L ≥ n!

2. Binary Tree Property: A binary tree of height h has at most 2h leaves.

L ≤ 2h

3. Combining:

2h ≥ n!

Taking logarithms base 2:

h ≥ lg(n!)

4. Stirling’s Approximation: For large n, n! ≈
√
2πn(n

e
)n.

lg(n!) ≈ lg
((n

e

)n)
= n lg n− n lg e = Θ(n log n)

5. Conclusion: h = Ω(n log n).

6.4 Summary of Sorting Algorithms

We can now classify sorting algorithms based on this lower bound.

Algorithm Best Time Avg Time Worst Time Space
Insertion Sort O(n) O(n2) O(n2) O(1)
Merge Sort O(n lg n) O(n lg n) O(n lg n) O(n)
Heap Sort O(n lg n) O(n lg n) O(n lg n) O(1)
Quick Sort O(n lg n) O(n lg n) O(n2) O(lg n)
Rand. Quick Sort O(n lg n) O(n lg n) O(n2) O(lg n)

Table 3: Comparison of Sorting Algorithms. Note: Heap Sort and Merge Sort are
asymptotically optimal comparison sorts.

Note on Linear Time: The Ω(n log n) bound applies only to comparison sorts. If

we know more about the input (e.g., integers in a small range), we can break this barrier

cbna 32 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 6 Randomisation & Lower Bounds

using algorithms like Counting Sort or Radix Sort (next section).

cbna 33 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 7 Sorting in Linear Time

7 Sorting in Linear Time

7.1 Breaking the Speed Limit

7.1.1 The Comparison Bottleneck

In previous lectures, we established a fundamental limit: Any comparison-based

sorting algorithm requires Ω(n log n) time in the worst case. This is a mathematical

certainty derived from the height of the decision tree.

7.1.2 The Way Out

How can we sort faster than O(n log n)? We must change the rules of the game.

• Stop Comparing: Do not ask ”Is A[i] < A[j]?”.

• Start Inspecting: Use the actual numerical value of the keys to determine their

position directly.

• Constraint: These algorithms assume the input comes from a restricted domain

(e.g., small integers).

7.2 Counting Sort

Counting Sort is the foundational algorithm for linear-time sorting. It relies on the

assumption that input elements are integers in the range {0, . . . , k}.

7.2.1 The Algorithm logic

The core idea is determining, for each input element x, exactly how many elements are

less than or equal to x. If there are 17 elements smaller than x, then x belongs at position

18.

cbna 34 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 7 Sorting in Linear Time

Algorithm 9 Counting Sort

1: procedure Counting-Sort(A,B, k)
2: Let C[0 . . . k] be a new array initialized to 0
3: ▷ Step 1: Frequency Count (Histogram)
4: for j = 1 to A.length do
5: C[A[j]] = C[A[j]] + 1
6: end for
7: ▷ Step 2: Cumulative Sums (Prefix Sums)
8: for i = 1 to k do
9: C[i] = C[i] + C[i− 1]
10: end for
11: ▷ C[i] now contains the number of elements ≤ i
12: ▷ Step 3: Placement (Reverse Traversal)
13: for j = A.length downto 1 do
14: B[C[A[j]]] = A[j] ▷ Place element at its correct sorted position
15: C[A[j]] = C[A[j]]− 1 ▷ Decrement count for the next instance
16: end for
17: end procedure

7.2.2 Why Traverse Backwards? (Stability)

Notice the loop in Step 3 goes downto 1. This is crucial for Stability.

• Suppose the input A contains two copies of value 3: 3a at index 2 and 3b at index 5.

• The algorithm encounters 3b first. It places 3b at position C[3] and decrements C[3].

• Later, it encounters 3a. It places 3a at position C[3] (which is now one less).

• Result: 3b appears after 3a in the output, preserving their original relative order.

7.2.3 Complexity Analysis

• Time: Θ(k) (init) + Θ(n) (count) + Θ(k) (sum) + Θ(n) (place) = Θ(n+ k).

• Space: Θ(n+ k) for arrays B and C.

• Implication: If k = O(n) (the range is linear in the number of elements), Counting

Sort runs in linear time Θ(n).

7.3 Radix Sort

Counting Sort is fast but impractical for large ranges (e.g., sorting 32-bit integers would

require k = 232 memory). Radix Sort solves this by sorting digit-by-digit.

cbna 35 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 7 Sorting in Linear Time

7.3.1 The Algorithm (LSD Approach)

We sort by the Least Significant Digit (LSD) first, then the next digit, and so on, up to

the Most Significant Digit (MSD). Crucial Requirement: The sort used for each digit

must be stable.

Algorithm 10 Radix Sort

1: procedure Radix-Sort(A, d)
2: for i = 1 to d do
3: Use a stable sort to sort array A on digit i
4: end for
5: end procedure

7.3.2 Why LSD works (Intuition)

Why start from the right?

• After sorting on digit 1, the array is sorted by the last digit.

• When we sort on digit 2, stability ensures that if two numbers have the same 2nd

digit, their order determined by the 1st digit is preserved.

• Inductive Hypothesis: After sorting on digit i, the array is sorted according to

the value of the number formed by the last i digits.

7.3.3 Trace Example

Sorting: [329, 457, 657, 839, 436, 720, 355]

1. Sort on ones digit: 720, 355, 436, 457, 657, 329, 839 (Note: 457 comes before 657

because it appeared first; 329 before 839).

2. Sort on tens digit: 720, 329, 436, 839, 355, 457, 657

3. Sort on hundreds digit: 329,355,436,457,657,720,839 Sorted!

7.4 Advanced Analysis: Breaking the O(n3) Range

Consider the problem: Sort n integers in the range 0 to n3 − 1.

cbna 36 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 7 Sorting in Linear Time

7.4.1 Attempt 1: Comparison Sort

Standard Merge/Quick Sort takes Θ(n log n). Good, but not linear.

7.4.2 Attempt 2: Counting Sort

The range is k = n3. Runtime: Θ(n+ k) = Θ(n+ n3) = Θ(n3). This is terrible.

7.4.3 Attempt 3: Radix Sort (Base 10)

Range M = n3. Number of digits d = log10M = 3 log10 n. Runtime: Θ(d ·n) = Θ(n log n).

Still not linear.

7.4.4 Attempt 4: Radix Sort (Base n)

Treat the numbers as being written in base n.

• The ”digits” now range from 0 to n− 1. So k = n.

• How many digits d?

d = logn(n
3 − 1) ≈ logn(n

3) = 3

So we only have 3 ”digits”.

• Runtime:

T (n) = Θ(d(n+ k)) = Θ(3(n+ n)) = Θ(6n) = Θ(n)

Conclusion: By changing the base to n, we can sort integers up to nk (for any constant

k) in linear time.

7.5 Summary Table

Algorithm Time Space Constraints
Counting Sort Θ(n+ k) Θ(n+ k) Efficient when k = O(n).
Radix Sort Θ(d(n+ k)) Θ(n+ k) Efficient when numbers have fixed d.
Comparison Sorts Ω(n log n) Varies General purpose.

Table 4: Comparison of Linear-Time vs General Sorts

cbna 37 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 8 Elementary Data Structures

8 Elementary Data Structures

8.1 Foundations: The Limitations of Arrays

8.1.1 Data Structures vs. Raw Memory

A Data Structure is not merely a container; it is a strategic way of organizing a finite

dynamic set of elements to optimize specific operations. Elements usually consist of:

• Key: The identifier (used for sorting/searching).

• Satellite Data: The payload.

• Attributes: Meta-data maintained by the structure (e.g., next, top, head).

8.1.2 The Array Bottleneck

Why do we need anything other than arrays? Arrays map indices to memory addresses

directly (O(1) access), but they are rigid.

• Unsorted Array:

– Insertion: O(1) (append to end).

– Search: Θ(n) (linear scan).

• Sorted Array:

– Search: O(log n) (Binary Search).

– Insertion/Deletion: Θ(n). Why? Because elements are stored contiguously

in memory. Inserting x at index i requires shifting elements i . . . n one position

to the right.

Conclusion: Arrays cannot simultaneously offer fast search and fast dynamic updates.

cbna 38 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 8 Elementary Data Structures

8.2 Stacks (LIFO)

8.2.1 Philosophy

A Stack enforces a Last-In, First-Out (LIFO) policy. By restricting access strictly to

the ”top” element, we eliminate the need for shifting. Thus, operations become O(1).

8.2.2 Array Implementation

We can simulate a stack using an array S and a pointer S.top.

• Empty: S.top = 0.

• Push: Increment top, then write. (Check for Overflow).

• Pop: Read, then decrement top. (Check for Underflow).

Algorithm 11 Stack Operations

1: procedure Push(S, x)
2: if S.top == S.size then
3: Error ”Overflow”
4: else
5: S.top = S.top+ 1
6: S[S.top] = x
7: end if
8: end procedure

9: procedure Pop(S)
10: if Stack-Empty(S) then
11: Error ”Underflow”
12: else
13: S.top = S.top− 1
14: Return S[S.top+ 1]
15: end if
16: end procedure

8.2.3 Algorithmic Applications

Stacks are the natural data structure for processing nested or recursive structures.

1. Bracket Balance Checking: Problem: Is ‘[()][()]‘ valid?

• Algorithm: Iterate through the string.

cbna 39 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 8 Elementary Data Structures

• If Opening (‘(‘, ‘[‘, ‘‘): Push onto stack.

• If Closing (‘)‘, ‘]‘, ‘‘): Pop. Check if the popped element matches the current

closing bracket.

• Result: Valid iff stack is empty at the end and no mismatches occurred.

2. Postfix Expression Evaluation: Infix: (9+3) ∗ (4 ∗ 2)→ Postfix: 9 3 + 4 2 ∗ ∗

• Algorithm:

– Operand (9, 3): Push.

– Operator (+): Pop b (3), Pop a (9). Compute a+ b. Push result (12).

• Advantage: Eliminates need for parentheses and operator precedence rules.

8.3 Queues (FIFO)

8.3.1 Philosophy

A Queue enforces a First-In, First-Out (FIFO) policy. It models fairness (lines,

buffers).

• Enqueue: Add to Tail.

• Dequeue: Remove from Head.

8.3.2 Circular Buffer Implementation

To implement a queue in a fixed array without shifting elements after every dequeue, we

use modular arithmetic to wrap indices around.

• Q.head: Index of the element to dequeue.

• Q.tail: Index of the next empty slot.

• Full Condition: (Q.tail + 1) == Q.head (conceptually).

Runtime: O(1) for both.

cbna 40 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 8 Elementary Data Structures

Algorithm 12 Queue Operations

1: procedure Enqueue(Q, x)
2: Q[Q.tail] = x
3: if Q.tail == Q.size then Q.tail = 1 ▷ Wrap around
4: else Q.tail = Q.tail + 1
5: end if
6: end procedure

7: procedure Dequeue(Q)
8: x = Q[Q.head]
9: if Q.head == Q.size then Q.head = 1 ▷ Wrap around
10: else Q.head = Q.head+ 1
11: end if
12: Return x
13: end procedure

8.4 Priority Queues

Stacks and Queues are determined by time. Priority Queues are determined by impor-

tance (Key).

• Operations: Insert, Extract-Max.

• Implementation:

– Sorted Array: Extract-Max is O(1), but Insert is O(n).

– Heap: Both operations are O(log n). (Covered in detail in Heapsort lecture).

8.5 Linked Lists

8.5.1 Breaking the Contiguity Constraint

Linked Lists decouple logical order from physical memory order.

• Pros: Dynamic size; O(1) insertion/deletion (if location is known).

• Cons: No random access; Θ(n) search; Extra memory for pointers.

cbna 41 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 8 Elementary Data Structures

8.5.2 Operations Analysis

1. Searching: Must scan sequentially from head.

T (n) = Θ(n)

2. Insertion (at front):

• New node points to old head.

• Old head’s prev points to new node.

• Update head pointer.

T (n) = O(1)

3. Deletion: This operation highlights the difference between ”Knowing the Key”

and ”Knowing the Node”.

• Case A: Given Key k: We must first Search for k (Θ(n)), then delete. Total:

Θ(n).

• Case B: Given Pointer x: We simply rewire the pointers of x.prev and x.next to

bypass x.

x.prev.next = x.next

x.next.prev = x.prev

Total: O(1).

8.6 Summary of Complexities

Data Structure Insert Delete Search Constraint
Array (Unsorted) O(1) O(1)∗ Θ(n) Static Size
Array (Sorted) Θ(n) Θ(n) O(log n) Static Size
Stack O(1) O(1) - LIFO Only
Queue O(1) O(1) - FIFO Only
Linked List O(1) O(1)∗∗ Θ(n) Sequential Access

Table 5: *Delete by swapping with last element. **Delete given pointer to node.

cbna 42 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

9 Binary Search Trees

9.1 Introduction to Trees

9.1.1 Definitions and Terminology

DEFINITION 9.1 (Binary Tree). A binary tree is a structure defined recursively. It

is a finite set of nodes that is either:

• Empty (contains no nodes).

• Consists of a root node and two disjoint binary trees called the left subtree and

the right subtree.

Key terminology:

• Leaf : A node with no children (left and right subtrees are empty).

• Height of a node: The length (number of edges) of the longest simple path from

the node to a leaf.

• Height of a tree: The height of the root.

• Depth of a node: The length of the path from the root to the node.

• Full Binary Tree: A binary tree in which every node is either a leaf or has exactly

two children.

9.1.2 Inductive Proofs on Trees

Because trees are defined recursively, they are well-suited for proofs by induction.

THEOREM 9.1. A binary tree of height h has at most 2h leaves.

Proof. We proceed by induction on the height h.

• Base Case (h = 0): The tree consists of a single root node. It has 1 leaf. Since

20 = 1, the base case holds.

• Inductive Hypothesis: Assume that for any binary tree of height h − 1, the

number of leaves is at most 2h−1.

cbna 43 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

• Inductive Step: Consider a tree T of height h. Its root has two subtrees (left

and right), each with height at most h − 1. Let L(T) be the number of leaves.

L(T) = L(Tleft)+L(Tright). By the hypothesis, L(Tleft) ≤ 2h−1 and L(Tright) ≤ 2h−1.

Thus, L(T) ≤ 2h−1 + 2h−1 = 2 · 2h−1 = 2h.

9.2 Binary Search Trees (BST)

DEFINITION 9.2 (Binary Search Tree Property). Let x be a node in a binary search

tree.

• If y is a node in the left subtree of x, then y.key ≤ x.key.

• If y is a node in the right subtree of x, then y.key ≥ x.key.

This property allows us to print all keys in sorted order using a simple recursive

algorithm.

9.2.1 Tree Walks

Algorithm 13 Inorder Tree Walk

1: procedure Inorder-Walk(x)
2: if x ̸= NIL then
3: Inorder-Walk(x.left)
4: Print x.key
5: Inorder-Walk(x.right)
6: end if
7: end procedure

THEOREM 9.2. If x is the root of an n-node subtree, the call Inorder-Walk(x) takes

Θ(n) time.

Proof. We can prove this using the Accounting Method. Assign a constant cost c to

each node. The procedure visits each node exactly once (when printing), and traverses

each edge exactly twice (once going down, once returning up). Since the number of edges

is n− 1, the total work is proportional to the number of nodes. Thus, T (n) = Θ(n).

cbna 44 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

9.3 Query Operations

Operations on a BST generally depend on the height h of the tree, taking O(h) time.

9.3.1 Search

To find a node with key k, we trace a path from the root.

Algorithm 14 Tree Search

1: procedure Tree-Search(x, k)
2: if x == NIL or k == x.key then
3: return x
4: end if
5: if k < x.key then
6: return Tree-Search(x.left, k)
7: else
8: return Tree-Search(x.right, k)
9: end if
10: end procedure

9.3.2 Minimum and Maximum

Due to the BST property:

• The minimum element is found by following left pointers until a node with no

left child is reached.

• The maximum element is found by following right pointers until a node with no

right child is reached.

Runtime: O(h).

9.3.3 Successor

The successor of a node x is the node with the smallest key greater than x.key.

• Case 1: If the right subtree of x is non-empty, the successor is the minimum node

in the right subtree.

• Case 2: If the right subtree is empty, the successor is the lowest ancestor of x whose

left child is also an ancestor of x (i.e., we go up until we turn right).

cbna 45 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

Algorithm 15 Tree Successor

1: procedure Tree-Successor(x)
2: if x.right ̸= NIL then
3: return Tree-Minimum(x.right)
4: end if
5: y = x.p
6: while y ̸= NIL and x == y.right do ▷ Go up while we are a right child
7: x = y
8: y = y.p
9: end while
10: return y
11: end procedure

9.4 Modifying Operations

9.4.1 Insertion

To insert a new value z, we trace a path from the root downwards, similar to Tree-Search.

We maintain a ”trailing pointer” y to keep track of the parent. When we hit NIL, we

attach z to y.

Algorithm 16 Tree Insert

1: procedure Tree-Insert(T, z)
2: y = NIL
3: x = T.root
4: while x ̸= NIL do
5: y = x
6: if z.key < x.key then x = x.left
7: else x = x.right
8: end if
9: end while
10: z.p = y
11: if y == NIL then T.root = z ▷ Tree was empty
12: else if z.key < y.key then y.left = z
13: else y.right = z
14: end if
15: end procedure

Runtime: O(h).

cbna 46 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

9.4.2 Deletion

Deleting a node z is the most complex operation. We handle three cases:

1. No children: z is a leaf. Simply remove it.

2. One child: Splice z out. Replace z with its child.

3. Two children: Find z’s successor y. y must lie in z’s right subtree and has no left

child. We replace z’s content with y’s content and splice y out.

We use a subroutine Transplant to replace one subtree rooted at u with another

rooted at v.

Algorithm 17 Transplant

1: procedure Transplant(T, u, v)
2: if u.p == NIL then
3: T.root = v
4: else if u == u.p.left then
5: u.p.left = v
6: else
7: u.p.right = v
8: end if
9: if v ̸= NIL then
10: v.p = u.p
11: end if
12: end procedure

Algorithm 18 Tree Delete

1: procedure Tree-Delete(T, z)
2: if z.left == NIL then ▷ Case 1 or Case 2 (no left child)
3: Transplant(T, z, z.right)
4: else if z.right == NIL then ▷ Case 2 (no right child)
5: Transplant(T, z, z.left)
6: else ▷ Case 3: Two children
7: y = Tree-Minimum(z.right) ▷ Find successor
8: if y.p ̸= z then ▷ If successor is not immediate child
9: Transplant(T, y, y.right) ▷ Replace y with its right child
10: y.right = z.right
11: y.right.p = y
12: end if
13: Transplant(T, z, y) ▷ Replace z with y
14: y.left = z.left
15: y.left.p = y
16: end if
17: end procedure

cbna 47 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 9 Binary Search Trees

Runtime: O(h) because finding the successor and handling pointers takes time

proportional to height.

9.5 Performance Analysis

The runtime of BST operations is determined by the height h.

• Worst Case: If we insert elements in sorted (or reverse sorted) order, the tree

becomes a linear chain.

h = n =⇒ Runtime = Θ(n)

• Best/Average Case: In a randomly built BST, the expected height is logarithmic.

h = O(lg n) =⇒ Runtime = O(lg n)

This instability motivates the need for Balanced Binary Search Trees (like AVL

trees or Red-Black trees), which guarantee h = O(lg n).

cbna 48 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 10 AVL Trees

10 AVL Trees

10.1 Motivation

Standard Binary Search Trees (BSTs) support operations (Search, Insert, Delete, Min,

Max) in O(h) time. However, in the worst case (e.g., inserting sorted data), the height h

can degrade to O(n), making operations linear. To guarantee O(lg n) performance, we

need to enforce a balance condition. AVL Trees (Adelson-Velsky and Landis, 1962) are

the first self-balancing BSTs invented.

10.2 Definition and Properties

10.2.1 AVL Property

DEFINITION 10.1 (AVL Tree). An AVL tree is a binary search tree that satisfies the

AVL Property: For every node v in the tree, the heights of its left and right subtrees

differ by at most 1.

DEFINITION 10.2 (Balance Factor). The balance factor of a node v, denoted bal(v),

is defined as the height of the left subtree minus the height of the right subtree:

bal(v) = height(v.left)− height(v.right)

In an AVL tree, for every node v, bal(v) ∈ {−1, 0, 1}.

10.2.2 Height Analysis

THEOREM 10.1. The height h of an AVL tree with n nodes is O(lg n). More specifically,

h < 1.44 lg(n+ 2).

Proof. Let N(h) be the minimum number of nodes in an AVL tree of height h.

• N(0) = 1 (Root only, height 0).

• N(1) = 2 (Root + 1 child).

cbna 49 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 10 AVL Trees

• For general h, the root must have two subtrees. To minimize nodes while maintaining

height h, one subtree must have height h− 1 and the other h− 2.

N(h) = 1 +N(h− 1) +N(h− 2)

This recurrence is strictly greater than the Fibonacci sequence (Fh ≈ ϕh/
√
5 where

ϕ ≈ 1.618). Solving the recurrence implies n > ϕh, thus h < logϕ n ≈ 1.44 lg n.

10.3 Rotations

Rotations are the fundamental operations to rebalance a tree without violating the BST

property (inorder traversal remains unchanged). They take O(1) time.

10.3.1 Right Rotation

Used when the left subtree is too heavy.

Algorithm 19 Right Rotation

1: procedure Right-Rotate(T, y)
2: x = y.left
3: y.left = x.right ▷ Turn x’s right subtree into y’s left subtree
4: if x.right ̸= NIL then x.right.p = y
5: end if
6: x.p = y.p ▷ Link x to y’s parent
7: if y.p == NIL then T.root = x
8: else if y == y.p.right then y.p.right = x
9: else y.p.left = x
10: end if
11: x.right = y ▷ Put y on x’s right
12: y.p = x
13: Update heights of x and y
14: end procedure

10.3.2 Left Rotation

Used when the right subtree is too heavy. Symmetric to Right Rotation.

cbna 50 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 10 AVL Trees

10.4 Insertion

Goal: Insert a node z and restore the AVL property if violated. Steps:

1. Perform a standard BST insertion.

2. Update the height of ancestors of z.

3. Check for imbalance: If a node v has |bal(v)| > 1, perform rotations.

Let v be the lowest unbalanced node (the first one encountered moving up from z).

Let x be the child of v in the direction of the imbalance. There are 4 cases:

10.4.1 Case 1: Left-Left (LL)

• Condition: v is heavy on the left (bal(v) = +2) AND x is heavy on the left

(bal(x) = +1 or 0).

• Fix: Right-Rotate(v).

10.4.2 Case 2: Right-Right (RR)

• Condition: v is heavy on the right (bal(v) = −2) AND x is heavy on the right

(bal(x) = −1 or 0).

• Fix: Left-Rotate(v).

10.4.3 Case 3: Left-Right (LR)

• Condition: v is heavy on the left (bal(v) = +2) BUT x is heavy on the right

(bal(x) = −1).

• Fix: Double Rotation.

1. Left-Rotate(x) (Converts structure to LL case).

2. Right-Rotate(v).

cbna 51 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 10 AVL Trees

10.4.4 Case 4: Right-Left (RL)

• Condition: v is heavy on the right (bal(v) = −2) BUT x is heavy on the left

(bal(x) = +1).

• Fix: Double Rotation.

1. Right-Rotate(x) (Converts structure to RR case).

2. Left-Rotate(v).

Runtime: Insertion takes O(lg n) for the search. Rebalancing requires retracing the path

(O(lg n)) and at most one or two rotations (since fixing the lowest imbalance restores the

global height). Total: O(lg n).

10.5 Deletion

Goal: Delete node z and restore AVL property. Steps:

1. Perform standard BST deletion.

2. Retrace the path from the parent of the deleted node (or spliced node) up to the

root.

3. At each node, update height and check balance.

4. If unbalanced, apply rotations (same 4 cases as insertion).

10.5.1 Propagation of Imbalance

Unlike insertion, where one rotation fixes the tree, a rotation during deletion might reduce

the height of the subtree, causing the parent to become unbalanced. Thus, rebalancing

may propagate all the way up to the root, requiring O(lg n) rotations.

Runtime: O(lg n).

10.6 Summary

cbna 52 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 10 AVL Trees

Operation BST (Worst Case) AVL (Worst Case)
Search O(n) O(lg n)
Insert O(n) O(lg n)
Delete O(n) O(lg n)

Table 6: Comparison of BST and AVL complexities

cbna 53 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

11 Dynamic Programming

11.1 The Paradigm Shift

11.1.1 Motivation: Divide-and-Conquer vs. Dynamic Pro-

gramming

Divide-and-Conquer algorithms (like MergeSort or QuickSort) rely on splitting a problem

into disjoint subproblems.

• Disjoint: The subproblems do not share any common history. Solving the left half

of an array tells you nothing about the right half.

• Efficiency: Because they are disjoint, we just solve each once and combine them.

However, many optimization problems break down into Overlapping Subproblems.

• If we use standard recursion, we end up solving the same small subproblems millions

of times.

• Dynamic Programming (DP) is the technique of ”Store, Don’t Recompute”.

We trade space (memory to store results) for time (CPU cycles).

11.2 Motivating Example: Fibonacci Numbers

The Fibonacci sequence is defined as:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2

11.2.1 The Naive Recursive Approach

Algorithm 20 Naive-Fib(n)

1: procedure Fib(n)
2: if n ≤ 1 then return n
3: else return Fib(n− 1) + Fib(n− 2)
4: end if
5: end procedure

cbna 54 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

Analysis: The recursion tree grows exponentially. To compute F (5), we compute

F (3) twice. To compute F (6), we compute F (4) twice and F (3) three times.

T (n) ≈ ϕn ≈ 1.618n (Exponential Explosion)

11.2.2 The DP Approach (Memoization)

We use a table to cache results. This is called **Memoization** (Top-Down strategy).

• Before computing, check the table.

• After computing, save to the table.

Algorithm 21 Memoized-Fib(n)

1: Let memo[0 . . . n] be array initialized to ∞
2: procedure Fib-Memo(n)
3: if memo[n] ̸=∞ then return memo[n] ▷ Cache Hit
4: end if
5: if n ≤ 1 then f = n
6: else f = Fib-Memo(n− 1) + Fib-Memo(n− 2)
7: end if
8: memo[n] = f ▷ Cache Miss: Store result return f
9: end procedure

Analysis: Since each F (i) for 0 ≤ i ≤ n is computed exactly once, the time complexity

drops to:

T (n) = Θ(n) (Linear Time)

11.3 Case Study: Rod Cutting Problem

11.3.1 Problem Definition

We are given a steel rod of length n and a price table pi for rod pieces of length i. We

want to cut the rod into pieces to maximize total revenue rn.

Mathematical Formulation: We can cut a piece of length i (1 ≤ i ≤ n) off the left

end, and then optimally solve the problem for the remaining length n− i.

rn = max
1≤i≤n

(pi + rn−i)

cbna 55 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

(Base case: r0 = 0).

11.3.2 Approach 1: Top-Down with Memoization

We stick to the recursive logic but add a ”memory” (array r).

• Check: Before computing, is r[n] ≥ 0? If yes, return it.

• Save: After computing max q, save r[n] = q.

Algorithm 22 Memoized-Cut-Rod(p, n)

1: procedure Memoized-Cut-Rod(p, n)
2: Let r[0 . . . n] be new array initialized to −∞
3: return Memoized-Cut-Rod-Aux(p, n, r)
4: end procedure

▷ Visual separator between procedures
5: procedure Memoized-Cut-Rod-Aux(p, n, r)
6: if r[n] ≥ 0 then
7: return r[n] ▷ Return cached value
8: end if
9: if n == 0 then
10: q = 0
11: else
12: q = −∞
13: for i = 1 to n do ▷ Try every possible first cut
14: q = max(q, p[i] +Memoized-Cut-Rod-Aux(p, n− i, r))
15: end for
16: end if
17: r[n] = q ▷ Store optimal value for length n
18: return q
19: end procedure

11.3.3 Approach 2: Bottom-Up (Tabulation)

Recursion has overhead (stack depth). We can eliminate recursion by filling the table in

order of dependency: from smallest (0) to largest (n).

Runtime: The nested loop structure gives a clear arithmetic sum:

T (n) =
n∑

j=1

j =
n(n+ 1)

2
= Θ(n2)

cbna 56 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

Algorithm 23 Bottom-Up-Cut-Rod(p, n)

1: procedure Bottom-Up-Cut-Rod(p, n)
2: Let r[0 . . . n] be new array
3: r[0] = 0
4: for j = 1 to n do ▷ Solve for rod length j
5: q = −∞
6: for i = 1 to j do ▷ Try cut length i
7: ▷ Use previously computed solution for remainder j-i
8: q = max(q, p[i] + r[j − i])
9: end for
10: r[j] = q
11: end forreturn r[n]
12: end procedure

11.4 Reconstructing the Solution

Merely knowing the max revenue (rn) is often insufficient; we need the list of cut lengths.

To do this, we store the choice that yielded the optimal value. We extend the algorithm to

maintain an array s[j], which stores the optimal first cut length for a rod of length j.

Algorithm 24 Extended-Bottom-Up-Cut-Rod(p, n)

1: procedure Extended-Bottom-Up-Cut-Rod(p, n)
2: Let r[0 . . . n] and s[0 . . . n] be new arrays
3: r[0] = 0
4: for j = 1 to n do
5: q = −∞
6: for i = 1 to j do
7: if q < p[i] + r[j − i] then
8: q = p[i] + r[j − i]
9: s[j] = i ▷ Record the best cut i
10: end if
11: end for
12: r[j] = q
13: end forreturn r and s
14: end procedure

11.4.1 Printing the Cuts

We do not need recursion to print the solution. We simply trace the s array.

cbna 57 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

Algorithm 25 Print-Cut-Rod-Solution(p, n)

1: procedure Print-Cut-Rod-Solution(p, n)
2: (r, s) = Extended-Bottom-Up-Cut-Rod(p, n)
3: while n > 0 do
4: Print s[n] ▷ Print first cut
5: n = n− s[n] ▷ Move to remaining length
6: end while
7: end procedure

11.5 Theoretical Foundations

When should we use DP? Two key properties must hold:

11.5.1 Optimal Substructure

A problem exhibits optimal substructure if an optimal solution to the problem

contains within it optimal solutions to subproblems.

• Example: Shortest Path. If A→ B → C is the shortest path from A to C, then

A→ B must be the shortest path from A to B.

• Non-Example: Longest Simple Path. Longest path q → r → t does NOT imply

q → r is the longest simple path.

This property justifies the recurrence relation: rn = max(pi + rn−i).

11.5.2 Overlapping Subproblems

The recursive algorithm visits the same problem instances repeatedly.

• This distinguishes DP from Divide-and-Conquer.

• Merge Sort: Computes merge on disjoint arrays.

• Rod Cutting: To solve for length 4, we need length 3, 2, 1, 0. To solve for length

3, we need 2, 1, 0. Subproblem ”length 2” is reused multiple times.

11.6 Summary Comparison

cbna 58 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 11 Dynamic Programming

Feature Divide and Conquer Dynamic Programming
Subproblems Independent (Disjoint) Overlapping
Approach Recursive Recursive (Memoized) or Iterative (Tabulation)
Efficiency Splits problem size (e.g., n/2) Reuses solutions (Polynomial time)
Examples Merge Sort, Quick Sort Rod Cutting, Fibonacci, LCS

Table 7: Paradigm Comparison

cbna 59 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 12 Greedy Algorithms

12 Greedy Algorithms

12.1 The Philosophy of Greed

12.1.1 Core Concept

A Greedy Algorithm builds a solution piece by piece, always choosing the next piece

that offers the most immediate benefit.

• Motto: ”Take what you can get now!”

• Strategy: At each step, make a locally optimal choice in the hope that these

choices will lead to a globally optimal solution.

• Benefit: Usually very efficient (often O(n log n) or O(n)).

• Risk: It doesn’t always work. It never looks back to correct previous mistakes.

12.1.2 Comparison with Dynamic Programming

• Dynamic Programming: ”I need to know the solution to all subproblems before

I make a decision.” (Bottom-Up or Recursion). It considers all possibilities.

• Greedy: ”I will make a decision right now based on current information, and then

I will solve the remaining subproblem.” (Top-Down). It commits to a choice before

solving the subproblem.

12.2 Case Study: Activity Selection Problem

12.2.1 The Problem

We have a set of activities S = {a1, a2, . . . , an}. Each activity ai has a start time si and a

finish time fi.

• Constraint: Two activities are compatible if their time intervals [si, fi) and [sj, fj)

do not overlap.

• Goal: Select the maximum number of mutually compatible activities.

cbna 60 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 12 Greedy Algorithms

12.2.2 The Greedy Strategy

How do we choose the ”best” activity to pick first?

1. Shortest duration? No, a short task might happen right in the middle, blocking two

other tasks.

2. Earliest start time? No, a task starting at 1 AM might last until midnight, blocking

everything else.

3. Earliest Finish Time: Yes!

Intuition: By picking the activity that finishes soonest, we leave the maximum

amount of remaining time for other activities.

Algorithm 26 Greedy-Activity-Selector(s, f)

1: procedure Greedy-Activity-Selector(s, f)
2: Sort activities by finish time: f1 ≤ f2 ≤ · · · ≤ fn
3: A = {a1} ▷ Always select the first activity
4: k = 1 ▷ Index of the last selected activity
5: for m = 2 to n do
6: if sm ≥ fk then ▷ If activity m starts after k finishes
7: A = A ∪ {am}
8: k = m
9: end if
10: end forreturn A
11: end procedure

12.2.3 Runtime Analysis

• Sorting: O(n log n).

• Linear Scan: Θ(n).

• Total: Θ(n log n).

12.3 Theoretical Foundations

To prove a Greedy Algorithm works, the problem must exhibit two key properties:

cbna 61 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 12 Greedy Algorithms

12.3.1 Greedy Choice Property

We can assemble a globally optimal solution by making a locally optimal (greedy) choice.

• Implication: We don’t need to consider all options (like DP). We just prove that

the greedy choice is always part of some optimal solution.

12.3.2 Optimal Substructure

An optimal solution to the problem contains within it optimal solutions to subproblems.

• If we pick activity a1, the problem reduces to finding optimal activities in the

remaining time after a1 finishes.

12.4 The Tale of Two Knapsacks

This is the classic example showing when Greedy works and when it fails.

12.4.1 Problem Definitions

A thief robbing a store finds n items. The i-th item has value vi and weight wi. The

knapsack capacity is W .

• 0-1 Knapsack: You must take the item whole or leave it (xi ∈ {0, 1}). (e.g., Gold

ingots).

• Fractional Knapsack: You can take any fraction of an item (0 ≤ xi ≤ 1). (e.g.,

Gold dust).

12.4.2 The Greedy Strategy: Value Density

The intuitive greedy choice is to pick items with the highest value per unit weight

(vi/wi).

12.4.3 Analysis: Why Greedy Fails for 0-1 Knapsack

Consider Capacity W = 50.

cbna 62 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 12 Greedy Algorithms

• Item A: Weight 10, Value $60 ($6/lb)

• Item B: Weight 20, Value $100 ($5/lb)

• Item C: Weight 30, Value $120 ($4/lb)

Greedy Choice: 1. Pick Item A (Highest density). Remaining Capacity: 40. 2. Next

best is Item B. Remaining Capacity: 20. 3. Item C (Weight 30) doesn’t fit. Total Value:

$160.

Optimal Solution: Skip Item A. Pick Item B and Item C. Total Weight: 20+30 = 50.

Total Value: $100 + $120 = $220.

Conclusion: Greedy failed because picking A ”polluted” the capacity, preventing

us from taking the heavier but valuable combination of B+C. 0-1 Knapsack requires

Dynamic Programming.

12.4.4 Analysis: Why Greedy Works for Fractional Knapsack

Using the same items: 1. Pick Item A (10 lbs). Value $60. Rem Cap: 40. 2. Pick

Item B (20 lbs). Value $100. Rem Cap: 20. 3. Pick 2/3 of Item C (20 lbs). Value

(2/3)× 120 = $80. Total Value: $240.

Conclusion: Because we can fill the ”gaps” with fractions, the ”Value Density”

strategy guarantees optimality.

12.5 5. Summary Comparison

Feature Dynamic Programming Greedy Algorithms
Choice Logic Dependent on subproblems (Look ahead) Independent, Local (Look now)
Structure Bottom-Up or Top-Down Top-Down
Efficiency Slower (often O(n2) or pseudo-polynomial) Very Fast (often O(n log n))
Correctness Guarantees Optimal Hard to prove (requires Greedy Property)
Example 0-1 Knapsack, LCS, Rod Cutting Fractional Knapsack, Activity Selection

Table 8: DP vs. Greedy

cbna 63 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 13 Elementary Graph Algorithms

13 Elementary Graph Algorithms

13.1 Graph Representations

A graph G = (V,E) can be represented in two standard ways: adjacency lists and

adjacency matrices.

13.1.1 Adjacency Lists

An array Adj of |V | lists, one for each vertex. The list Adj[u] contains all vertices v such

that (u, v) ∈ E.

• Space Complexity: Θ(V + E).

• Pros: Compact for sparse graphs.

• Cons: Checking if an edge (u, v) exists takes O(deg(u)) time.

13.1.2 Adjacency Matrix

A |V | × |V | matrix A where Aij = 1 if (i, j) ∈ E, and 0 otherwise.

• Space Complexity: Θ(V 2).

• Pros: Checking edge existence takes O(1).

• Cons: Wasteful for sparse graphs.

13.2 Breadth-First Search (BFS)

BFS explores a graph by visiting all neighbors of a node before moving to the next level

of neighbors. It computes the shortest path distance (in terms of number of edges) from a

source vertex s to all reachable vertices.

13.2.1 Algorithm

BFS uses a queue to manage the frontier of exploration. Vertices are colored to track

their status:

cbna 64 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 13 Elementary Graph Algorithms

• White: Undiscovered.

• Gray: Discovered but not fully processed (in the queue).

• Black: Fully processed (dequeued).

Algorithm 27 Breadth-First Search

1: procedure BFS(G, s)
2: for each vertex u ∈ G.V − {s} do
3: u.color = WHITE
4: u.d =∞
5: u.π = NIL
6: end for
7: s.color = GRAY
8: s.d = 0
9: s.π = NIL
10: Q = ∅
11: Enqueue(Q, s)
12: while Q ̸= ∅ do
13: u = Dequeue(Q)
14: for each v ∈ G.Adj[u] do
15: if v.color == WHITE then
16: v.color = GRAY
17: v.d = u.d+ 1
18: v.π = u
19: Enqueue(Q, v)
20: end if
21: end for
22: u.color = BLACK
23: end while
24: end procedure

13.2.2 Analysis

• Time Complexity:

– Each vertex is enqueued and dequeued at most once: O(V).

– The adjacency list of each vertex is scanned exactly once:
∑

u∈V |Adj[u]| =

Θ(E).

Total runtime: O(V + E).

• Shortest Paths: Upon termination, v.d = δ(s, v) (shortest path distance) for all

reachable v.

• BFS Tree: The predecessor pointers π define a breadth-first tree rooted at s.

cbna 65 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 13 Elementary Graph Algorithms

13.3 Depth-First Search (DFS)

DFS explores edges out of the most recently discovered vertex v that still has unexplored

edges leaving it. Once all edges from v have been explored, the search ”backtracks” to

explore edges leaving the vertex from which v was discovered.

13.3.1 Algorithm

DFS uses recursion (implicit stack). It records two timestamps for each vertex:

• v.d: Discovery time (vertex becomes Gray).

• v.f : Finish time (vertex becomes Black).

Algorithm 28 Depth-First Search

1: procedure DFS(G)
2: for each vertex u ∈ G.V do
3: u.color = WHITE
4: u.π = NIL
5: end for
6: time = 0
7: for each vertex u ∈ G.V do
8: if u.color == WHITE then
9: DFS-Visit(G, u)
10: end if
11: end for
12: end procedure

13: procedure DFS-Visit(G, u)
14: time = time+ 1
15: u.d = time
16: u.color = GRAY
17: for each v ∈ G.Adj[u] do
18: if v.color == WHITE then
19: v.π = u
20: DFS-Visit(G, v)
21: end if
22: end for
23: u.color = BLACK
24: time = time+ 1
25: u.f = time
26: end procedure

cbna 66 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 13 Elementary Graph Algorithms

13.3.2 Analysis

• Time Complexity:

– Initialization loops: Θ(V).

– DFS-Visit is called exactly once for each vertex.

– The loop over Adj[u] executes |Adj[u]| times. Total cost for edge exploration is

Θ(E).

Total runtime: Θ(V + E).

• Parenthesis Theorem: For any two vertices u and v, exactly one of the following

holds:

– Intervals [u.d, u.f] and [v.d, v.f] are disjoint.

– Interval [u.d, u.f] is contained within [v.d, v.f] (v is an ancestor of u).

– Interval [v.d, v.f] is contained within [u.d, u.f] (u is an ancestor of v).

13.3.3 Edge Classification

DFS can classify edges (u, v) based on the color of v when the edge is explored:

1. Tree Edge: v is WHITE. (Edge in the DFS forest).

2. Back Edge: v is GRAY. (Edge to an ancestor). Indicates a cycle.

3. Forward Edge: v is BLACK and u.d < v.d. (Edge to a descendant).

4. Cross Edge: v is BLACK and v.d < u.d. (All other edges).

13.4 Applications of DFS

13.4.1 Topological Sort

A topological sort of a DAG (Directed Acyclic Graph) is a linear ordering of vertices such

that for every edge (u, v), u appears before v.

• Algorithm: Run DFS. As each vertex is finished (blackened), insert it onto the

front of a linked list.

• Runtime: Θ(V + E).

cbna 67 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 13 Elementary Graph Algorithms

13.4.2 Strongly Connected Components (SCC)

A strongly connected component of a directed graph is a maximal set of vertices C ⊆ V

such that for every pair u, v ∈ C, u is reachable from v and v is reachable from u.

• Algorithm (Kosaraju’s):

1. Call DFS on G to compute finish times u.f .

2. Compute GT (transpose of G).

3. Call DFS on GT , but in the main loop consider vertices in order of decreasing

u.f .

4. Output the vertices of each tree in the DFS forest of step 3 as a separate SCC.

• Runtime: Θ(V + E).

cbna 68 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 14 Depth First Search & Applications

14 Depth First Search & Applications

14.1 Review of DFS

Depth-First Search (DFS) explores edges out of the most recently discovered vertex v that

still has unexplored edges leaving it. It uses colors (White, Gray, Black) and timestamps

(v.d for discovery, v.f for finish) to track progress.

Algorithm 29 Depth-First Search

1: procedure DFS(G)
2: for each vertex u ∈ G.V do
3: u.color = WHITE
4: u.π = NIL
5: end for
6: time = 0
7: for each vertex u ∈ G.V do
8: if u.color == WHITE then
9: DFS-Visit(G, u)
10: end if
11: end for
12: end procedure

Algorithm 30 DFS-Visit

1: procedure DFS-Visit(G, u)
2: time = time+ 1
3: u.d = time
4: u.color = GRAY
5: for each v ∈ G.Adj[u] do
6: if v.color == WHITE then
7: v.π = u
8: DFS-Visit(G, v)
9: end if
10: end for
11: u.color = BLACK
12: time = time+ 1
13: u.f = time
14: end procedure

Runtime: Θ(V + E).

cbna 69 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 14 Depth First Search & Applications

14.2 Properties of DFS

14.2.1 Parenthesis Structure

For any two vertices u and v, exactly one of the following holds:

1. The intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint (neither is a descendant of

the other).

2. The interval [u.d, u.f] is contained entirely within [v.d, v.f] (u is a descendant of v).

3. The interval [v.d, v.f] is contained entirely within [u.d, u.f] (v is a descendant of u).

14.2.2 White-Path Theorem

THEOREM 14.1. In a depth-first forest of a graph G = (V,E), vertex v is a descendant

of vertex u if and only if at the time u.d that the search discovers u, there is a path from

u to v consisting entirely of white vertices.

14.2.3 Edge Classification

DFS classifies edges (u, v) based on the color of v when the edge is explored:

• Tree Edge: v is WHITE.

• Back Edge: v is GRAY. (Implies a cycle).

• Forward Edge: v is BLACK and u.d < v.d.

• Cross Edge: v is BLACK and u.d > v.d.

Note: In an undirected graph, every edge is either a tree edge or a back edge.

14.3 Applications

14.3.1 Cycle Detection

THEOREM 14.2. A graph G contains a cycle if and only if a DFS yields at least one

back edge.

cbna 70 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 14 Depth First Search & Applications

Proof. (⇐) If (u, v) is a back edge, then v is an ancestor of u in the DFS tree. Thus,

there is a tree path from v to u, and the edge (u, v) completes the cycle. (⇒) If G has a

cycle C, let v be the first vertex in C discovered by DFS. Let (u, v) be the preceding edge

in C. At time v.d, the vertices of C form a white path from v to u. By the White-Path

Theorem, u becomes a descendant of v. Thus, (u, v) is a back edge.

14.3.2 Topological Sort

A topological sort of a DAG (Directed Acyclic Graph) is a linear ordering of vertices such

that for every edge (u, v), u appears before v.

Algorithm 31 Topological Sort

1: procedure Topological-Sort(G)
2: Call DFS(G) to compute finishing times v.f for each vertex v
3: As each vertex is finished, insert it onto the front of a linked list
4: return the linked list of vertices
5: end procedure

Correctness: If there is an edge (u, v), then v.f < u.f .

• When (u, v) is explored, v cannot be GRAY (otherwise it’s a back edge, implying a

cycle).

• If v is WHITE, it becomes a descendant of u, so v.f < u.f .

• If v is BLACK, it is already finished, so v.f < u.d < u.f .

Runtime: Θ(V + E).

14.3.3 Strongly Connected Components (SCC)

An SCC is a maximal set of vertices C ⊆ V such that for every pair u, v ∈ C, u⇝ v and

v ⇝ u.

Runtime: Θ(V + E).

• DFS on G: Θ(V + E).

• Compute GT : Θ(V + E).

• DFS on GT : Θ(V + E).

cbna 71 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis 14 Depth First Search & Applications

Algorithm 32 SCC Algorithm (Kosaraju)

1: procedure Strongly-Connected-Components(G)
2: Call DFS(G) to compute finishing times u.f
3: Compute GT (transpose of G)
4: Call DFS(GT), but in the main loop consider vertices in order of decreasing u.f

(from step 1)
5: Output the vertices of each tree in the DFS forest of step 3 as a separate SCC
6: end procedure

Remark 14.1. This algorithm works because components in the component graph (which is

a DAG) are effectively topologically sorted by finish times. Processing nodes in decreasing

order of finish times in GT isolates the SCCs one by one (sink components in the component

graph of G become source components in GT).

cbna 72 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

15 Minimum Spanning Trees and Shortest

Paths

15.1 Minimum Spanning Trees (MST)

15.1.1 Problem Definition

Given a connected, undirected graph G = (V,E) where each edge (u, v) ∈ E has a weight

w(u, v) ≥ 0. We want to find a subset of edges T ⊆ E that connects all vertices and

minimizes the total weight:

w(T) =
∑

(u,v)∈T

w(u, v)

Since T connects all vertices and has minimum weight, it must be acyclic. Thus, T is a

tree, called a Spanning Tree.

15.1.2 Generic Greedy Approach

We grow a set of edges A, maintaining the loop invariant that A is a subset of some

minimum spanning tree. At each step, we add a ”safe edge” (u, v) to A such that

A ∪ {(u, v)} is still a subset of an MST.

DEFINITION 15.1 (Cut). A cut (S, V − S) of an undirected graph G = (V,E) is a

partition of V .

DEFINITION 15.2 (Cross). An edge (u, v) ∈ E crosses the cut (S, V − S) if one of

its endpoints is in S and the other is in V − S.

DEFINITION 15.3 (Light Edge). An edge is a light edge crossing a cut if its weight

is the minimum of any edge crossing the cut.

THEOREM 15.1 (Cut Property / Safe Edge Theorem). Let A be a subset of some

MST (S, V − S) be any cut that respects A (i.e., no edge in A crosses the cut). Let (u, v)

be a light edge crossing (S, V − S). Then, edge (u, v) is safe for A.

cbna 73 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

15.2 Kruskal’s Algorithm

Idea: Kruskal’s algorithm builds the MST by finding safe edges from the lightest to the

heaviest. It treats the algorithm as managing a forest of trees. Initially, each vertex is its

own tree.

1. Sort all edges in non-decreasing order of their weights.

2. Iterate through the sorted edges. For each edge (u, v), if u and v are in different

trees (sets), add (u, v) to the forest and combine the two trees.

3. Repeat until all vertices are in the same tree.

15.2.1 Disjoint Set Data Structure

To implement Kruskal’s efficiently, we use a Disjoint Set Union (DSU) data structure

supporting:

• Make-Set(v): Creates a new set containing only v.

• Find-Set(v): Returns a representative element of the set containing v.

• Union(u, v): Merges the sets containing u and v.

Algorithm 33 Kruskal’s Algorithm

1: procedure MST-Kruskal(G,w)
2: A = ∅
3: for each vertex v ∈ G.V do
4: Make-Set(v)
5: end for
6: Sort the edges of G.E into nondecreasing order by weight w
7: for each edge (u, v) taken from the sorted list do
8: if Find-Set(u) ̸= Find-Set(v) then
9: A = A ∪ {(u, v)}
10: Union(u, v)
11: end if
12: end for
13: return A
14: end procedure

15.2.2 Analysis

• Initializing sets: O(V).

cbna 74 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

• Sorting edges: O(E lgE).

• Disjoint-set operations: O(Eα(V)), where α is the inverse Ackermann function

(extremely slow-growing, effectively constant).

Total runtime: O(E lgE). Since E < V 2, lgE = O(lg V), so the time is dominated by

sorting: O(E lg V).

15.3 Prim’s Algorithm

Idea: Prim’s algorithm works like Dijkstra’s algorithm. It grows a single tree T from an

arbitrary root r. At each step, it adds the lightest edge connecting a vertex in T to a

vertex outside T .

• The vertices not yet in the tree reside in a Min-Priority Queue Q.

• The key of a vertex v, v.key, is the minimum weight of any edge connecting v to a

vertex in the tree.

• v.π is the parent of v in the tree.

Algorithm 34 Prim’s Algorithm

1: procedure MST-Prim(G,w, r)
2: for each u ∈ G.V do
3: u.key =∞
4: u.π = NIL
5: end for
6: r.key = 0
7: Q = G.V ▷ Build Min-Priority Queue
8: while Q ̸= ∅ do
9: u = Extract-Min(Q)
10: for each v ∈ G.Adj[u] do
11: if v ∈ Q and w(u, v) < v.key then
12: v.π = u
13: v.key = w(u, v)
14: Decrease-Key(Q, v, w(u, v))
15: end if
16: end for
17: end while
18: end procedure

cbna 75 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

15.3.1 Analysis

The runtime depends on the implementation of the priority queue:

• Binary Heap:

– Build-Heap: O(V).

– Extract-Min: O(lg V), called V times. Total O(V lg V).

– Decrease-Key: O(lg V), called at most E times. Total O(E lg V).

Total: O(E lg V).

• Fibonacci Heap:

– Extract-Min: O(lg V) amortized.

– Decrease-Key: O(1) amortized.

Total: O(E + V lg V).

15.4 Single-Source Shortest Paths

Problem: Given a weighted, directed graph G = (V,E) with weight function w : E →

R, find the shortest path from a source s to all other vertices v. The weight of a

path p = ⟨v0, v1, . . . , vk⟩ is w(p) =
∑k

i=1 w(vi−1, vi). The shortest-path weight δ(u, v) is

min{w(p) : u⇝ v}.

15.4.1 Relaxation

The algorithms rely on the technique of relaxation. For each vertex v, we maintain an

attribute v.d, which is an upper bound on the weight of a shortest path from source s to

v.

15.5 Dijkstra’s Algorithm

Assumption: Edge weights are non-negative (w(u, v) ≥ 0).

Idea: Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path

weights have been determined. It repeatedly selects the vertex u ∈ V − S with the

cbna 76 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

Algorithm 35 Initialization and Relaxation

1: procedure Initialize-Single-Source(G, s)
2: for each vertex v ∈ G.V do
3: v.d =∞
4: v.π = NIL
5: end for
6: s.d = 0
7: end procedure

8: procedure Relax(u, v, w)
9: if v.d > u.d+ w(u, v) then
10: v.d = u.d+ w(u, v)
11: v.π = u
12: end if
13: end procedure

minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u.

Algorithm 36 Dijkstra’s Algorithm

1: procedure Dijkstra(G,w, s)
2: Initialize-Single-Source(G, s)
3: S = ∅
4: Q = G.V ▷ Min-priority queue keyed by d values
5: while Q ̸= ∅ do
6: u = Extract-Min(Q)
7: S = S ∪ {u}
8: for each vertex v ∈ G.Adj[u] do
9: Relax(u, v, w) ▷ Implicitly performs Decrease-Key if v ∈ Q
10: end for
11: end while
12: end procedure

15.5.1 Correctness

THEOREM 15.2. Dijkstra’s algorithm, run on a weighted, directed graph G with non-

negative weight function w and source s, terminates with u.d = δ(s, u) for all vertices

u ∈ V .

Proof. By invariant: At the start of each iteration of the while loop, v.d = δ(s, v) for

each vertex v ∈ S. When a vertex u is added to S, its shortest path is already found.

This relies on the fact that since weights are non-negative, taking a path through a vertex

with a larger d value cannot result in a shorter path to u.

cbna 77 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Data Structures and Algorithm Analysis15 Minimum Spanning Trees and Shortest Paths

15.5.2 Analysis

• Using Binary Heap: Each vertex extracted once: O(V lg V). Each edge relaxed

once: O(E lg V). Total: O(E lg V).

• Using Fibonacci Heap: O(V lg V + E).

15.6 Summary of Algorithms

Algorithm Problem Constraint Runtime (Binary Heap)
Kruskal MST Undirected O(E lg V)
Prim MST Undirected O(E lg V)
Dijkstra Shortest Path Non-negative weights O(E lg V)
Bellman-Ford Shortest Path No negative cycles O(V E)

Table 9: Comparison of Graph Algorithms

cbna 78 ←↩

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Index

Algorithm, 1

AVL Tree, 49

Balance Factor, 49

Big-O, 8

Big-Omega, 9

Big-Theta, 8

Binary Tree, 43

BST Property, 44

Correctness, 1

Cross, 73

Cut, 73

Cut Property, 73

Elementary Operations, 2

Instance, 1

Light Edge, 73

Little-o, 9

Little-omega, 9

Loop Invariant, 2

Master Theorem, 16

RAM Model, 2

Sorting Problem, 1

79

	Getting Started
	Foundations of Algorithms
	Definitions
	Correctness

	The Computational Model
	Insertion Sort
	The Concept
	The Algorithm

	Correctness via Loop Invariants
	Proof of Insertion Sort

	Runtime Analysis
	Detailed Cost Breakdown
	Best Case Analysis
	Worst Case Analysis

	Runtime and Asymptotic Notation
	Recap: Runtime of Insertion Sort
	Why Focus on the Worst Case?

	Asymptotic Analysis
	The Philosophy of Asymptotics

	Asymptotic Notations
	Big-Theta Notation (): Tight Bound
	Big-O Notation (O): Upper Bound
	Big-Omega Notation (): Lower Bound
	Strict Bounds (o and)

	Analogy with Real Numbers
	Properties and Growth Hierarchy
	Properties
	Common Growth Functions

	Application to Insertion Sort

	Divide-and-Conquer
	The Paradigm Shift
	Divide-and-Conquer Strategy
	Motivating Example: Binary Search

	Merge Sort
	The Algorithm
	The Merge Procedure
	Correctness of Merge

	Analysis of Merge Sort
	Recurrence Relation
	Recursion Tree Visualization
	Comparison with Insertion Sort

	The Master Theorem
	The Watershed Function
	The Three Cases
	Examples

	Heapsort
	Motivation: Smarter Selection
	The Heap Data Structure
	Definition
	The Heap Property

	Core Operations
	Maintaining the Property: Max-Heapify
	Building the Heap: Build-Max-Heap

	The Heapsort Algorithm
	Analysis
	Rebuild vs. Repair

	Priority Queues
	Summary

	Quicksort
	The Divide-and-Conquer Paradigm Revisited
	Structural Comparison

	Partitioning: The Core Mechanism
	The Lomuto Partition Scheme
	Trace Example
	Loop Invariant Visualization

	Rigorous Runtime Analysis
	Worst-Case: The Unbalanced Split
	Best-Case: The Perfect Split
	Average-Case: The Intuition of Balance
	Average-Case: Mathematical Proof

	Improvements and Variants
	Randomized Quicksort
	Median-of-3 Partitioning
	Handling Duplicates
	Dual-Pivot Quicksort

	Randomisation & Lower Bounds
	Randomisation in Algorithm Design
	The Motivation
	Randomised QuickSort

	Analysis of Expected Runtime
	Setup: Indicator Random Variables
	Linearity of Expectation
	The Probability of Comparison
	Summation and Result

	Lower Bounds for Comparison Sorts
	The Comparison Model
	Decision Trees
	The Lower Bound Theorem

	Summary of Sorting Algorithms

	Sorting in Linear Time
	Breaking the Speed Limit
	The Comparison Bottleneck
	The Way Out

	Counting Sort
	The Algorithm logic
	Why Traverse Backwards? (Stability)
	Complexity Analysis

	Radix Sort
	The Algorithm (LSD Approach)
	Why LSD works (Intuition)
	Trace Example

	Advanced Analysis: Breaking the O(n3) Range
	Attempt 1: Comparison Sort
	Attempt 2: Counting Sort
	Attempt 3: Radix Sort (Base 10)
	Attempt 4: Radix Sort (Base n)

	Summary Table

	Elementary Data Structures
	Foundations: The Limitations of Arrays
	Data Structures vs. Raw Memory
	The Array Bottleneck

	Stacks (LIFO)
	Philosophy
	Array Implementation
	Algorithmic Applications

	Queues (FIFO)
	Philosophy
	Circular Buffer Implementation

	Priority Queues
	Linked Lists
	Breaking the Contiguity Constraint
	Operations Analysis

	Summary of Complexities

	Binary Search Trees
	Introduction to Trees
	Definitions and Terminology
	Inductive Proofs on Trees

	Binary Search Trees (BST)
	Tree Walks

	Query Operations
	Search
	Minimum and Maximum
	Successor

	Modifying Operations
	Insertion
	Deletion

	Performance Analysis

	AVL Trees
	Motivation
	Definition and Properties
	AVL Property
	Height Analysis

	Rotations
	Right Rotation
	Left Rotation

	Insertion
	Case 1: Left-Left (LL)
	Case 2: Right-Right (RR)
	Case 3: Left-Right (LR)
	Case 4: Right-Left (RL)

	Deletion
	Propagation of Imbalance

	Summary

	Dynamic Programming
	The Paradigm Shift
	Motivation: Divide-and-Conquer vs. Dynamic Programming

	Motivating Example: Fibonacci Numbers
	The Naive Recursive Approach
	The DP Approach (Memoization)

	Case Study: Rod Cutting Problem
	Problem Definition
	Approach 1: Top-Down with Memoization
	Approach 2: Bottom-Up (Tabulation)

	Reconstructing the Solution
	Printing the Cuts

	Theoretical Foundations
	Optimal Substructure
	Overlapping Subproblems

	Summary Comparison

	Greedy Algorithms
	The Philosophy of Greed
	Core Concept
	Comparison with Dynamic Programming

	Case Study: Activity Selection Problem
	The Problem
	The Greedy Strategy
	Runtime Analysis

	Theoretical Foundations
	Greedy Choice Property
	Optimal Substructure

	The Tale of Two Knapsacks
	Problem Definitions
	The Greedy Strategy: Value Density
	Analysis: Why Greedy Fails for 0-1 Knapsack
	Analysis: Why Greedy Works for Fractional Knapsack

	5. Summary Comparison

	Elementary Graph Algorithms
	Graph Representations
	Adjacency Lists
	Adjacency Matrix

	Breadth-First Search (BFS)
	Algorithm
	Analysis

	Depth-First Search (DFS)
	Algorithm
	Analysis
	Edge Classification

	Applications of DFS
	Topological Sort
	Strongly Connected Components (SCC)

	Depth First Search & Applications
	Review of DFS
	Properties of DFS
	Parenthesis Structure
	White-Path Theorem
	Edge Classification

	Applications
	Cycle Detection
	Topological Sort
	Strongly Connected Components (SCC)

	Minimum Spanning Trees and Shortest Paths
	Minimum Spanning Trees (MST)
	Problem Definition
	Generic Greedy Approach

	Kruskal's Algorithm
	Disjoint Set Data Structure
	Analysis

	Prim's Algorithm
	Analysis

	Single-Source Shortest Paths
	Relaxation

	Dijkstra's Algorithm
	Correctness
	Analysis

	Summary of Algorithms

	Index

